3 resultados para papaya ringspot potyvirus

em eResearch Archive - Queensland Department of Agriculture


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fiji exports approximately 800 t year-1 of 'Solo Sunrise' papaya marketed as 'Fiji Red' to international markets which include New Zealand, Australia and Japan. The wet weather conditions from November to April each year result in a significant increase in fungal diseases present in Fiji papaya orchards. The two major pathogens that are causing significant post-harvest losses are: stem end rot (Phytophthora palmivora) and anthracnose (Colletotrichum spp.). The high incidence of post-harvest rots has led to increased rejection rates all along the supply chain, causing a reduction in income to farmers, exporters, importers and retailers of Fiji papaya. It has also undermined the superior quality reputation on the market. In response to this issue, the Fiji Papaya industry led by Nature's Way Cooperative, embarked on series of trials supported by the Australian Centre for International Agricultural Research (ACIAR) to determine the most effective and economical post-harvest control in Fiji papaya. Of all the treatments that were examined, a hot water dip treatment was selected by the industry as the most appropriate technology given the level of control that it provide, the cost effectiveness of the treatment and the fact that it was non-chemical. A commercial hot water unit that fits with the existing quarantine treatment and packing facilities has been designed and a cost benefit analysis for the investment carried out. This paper explores the research findings as well as the industry process that has led to the commercial uptake of this important technology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Export of Fijian papaya (Carica papaya) fruit to destinations such as New Zealand has increased significantly over the last several years. Shipment by sea rather than air is the preferred method, given the capacity for larger volumes and reductions in cost. Long shipping times, however, can compromise fruit quality, although the use of modified atmosphere packaging (MAP) may provide a viable solution for extending fruit storage life. In a collaborative ACIAR project, Australian and Fijian researchers investigated the potential of using MAP to extend storage life of a Fijian papaya ('Fiji Red') fruit based on simulated sea transport conditions. Fruit were packed in one of three MAP environments within cartons, consisting of either a (1) Low Density Polyethylene (LDPE) bag with 10 g of KMnO4, (2) Polyamide Film (PF) bag with macro-perforations or (3) without a bag (control fruit). Fruit were held for 1, 2 or 3 weeks at 10°C before being unpacked, ripened and assessed for quality. On day 6 after outturn, fruit with the highest overall quality were those held in LDPE bags. LDPE fruit generally coloured up faster at outturn than PF or control fruit, had less overall moisture loss and scored high in flavour. Headspace carbon dioxide and oxygen concentrations within the LDPE bags were also near recommended levels for maintaining optimum storage-life quality. The LDPE bag provided the most suitable conditions for long term storage of fresh papaya fruit and is therefore the recommended MAP type for use with sea freight export out of Fiji.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In Australia, Sportak® (a.i., prochloraz) has been registered since the early 1980's for the postharvest control of both anthracnose and stem-end rots in papaya fruit, despite the persistence of fruit breakdown due to disease during transit and at market destinations. Consequently, the Australian papaya industry has been concerned over the efficacy of prochloraz and whether substitute or alternative solutions were available for better disease control, particularly during times of peak disease pressure. This study therefore investigated the effects of various postharvest treatments for disease control in papaya. Fruit were harvested at colour break from coastal farms in Far North Queensland and treated with commercial rates of various fungicides, including prochloraz, imazalil, thiabendazole and fludioxonil. Additional solutions known to inhibit disease were examined, including chitosan and carnauba wax both with and without ammonium carbonate (AC). Following treatment, fruit were ripened and assessed for quality over their shelf life. Fludioxonil when applied as a hot dip was found to be a more efficacious treatment for control of disease in papaya than prochloraz. The other fungicides were moderately effective, as both thiabendazol and prochloraz exhibited an intermediate response and imazalil was the least effective. Disease severity was lowest in fruit treated with AC followed by chitosan, whilst chitosan delayed degreening. Overall, the study found that hot fludioxonil provided an effective replacement of the currently registered chemical prochloraz, and that alternate solutions such chitosan and AC may also be beneficial, particularly for low chemical input farming systems.