25 resultados para oxygen ingress rate
em eResearch Archive - Queensland Department of Agriculture
Resumo:
A study undertaken in Hervey Bay, Queensland, investigated the potential of creating an indigenous agribusiness opportunity based on the cultivation of indigenous Australian vegetables and herbs. Included were warrigal greens (WG) (Tetragonia tetragonioides), a green leafy vegetable and the herb sea celery (SC) (Apium prostratum); both traditional foods of the indigenous population and highly desirable to chefs wishing to add a unique, indigenous flavour to modern dishes. Packaging is important for shelf life extension and minimisation of postharvest losses in horticultural products. The ability of two packaging films to extend WG and SC shelf life was investigated. These were Antimisted Biaxial Oriented Polypropylene packaging film (BOPP) without perforations and Antifog BOPP Film with microperforations. Weight loss, packaging headspace composition, colour changes, sensory differences and microbial loads of packed WG and SC leaves were monitored to determine the impact of film oxygen transmission rate (OTR) and film water vapour transmission (WVT) on stored product quality. WG and SC were harvested, sanitised, packed and stored at 4°C for 16 days. Results indicated that the OTR and WVT rates of the package film significantly (PKLEINERDAN0.05) influenced the package headspace and weight loss, but did not affect product colour, total bacteria, yeast and mould populations during storage. There was no significant difference (PGROTERDAN0.05) in aroma, appearance, texture and flavour for WG and SC during storage. It was therefore concluded that a shelf life of 16 days at 4°C, where acceptable sensory properties were retained, was achievable for WG and SC in both packaging films.
Resumo:
The greatest attraction to using carambola (Averrhoa carambola L.) in the fresh-cut market is the star shape that the fruit presents after a transverse cut. Carambola is well-suited for minimal processing, but cut surface browning is a main cause of deterioration. This problem is exacerbated as a result of mechanical injuries occurring during processing and is mainly induced by the leakage of phenolic compounds from the vacuole and subsequent oxidation by polyphenol oxidase (PPO) (Augustin et al., 1985). The use of browning inhibitors in processed fruits is restricted to compounds that are non-toxic, ‘wholesome’, and that do not adversely affect taste and flavour (Gil et al., 1998). In the past, browning was mainly controlled by the action of sulphites, but the use of this compound has declined due to allergic reactions in asthmatics (Weller et al., 1995). The shelf life of fresh-cut products may be extended by a combination of oxygen exclusion and the use of enzymatic browning inhibitors. The objectives of this work were to determine the effects of: (1) post-cutting chemical treatments of ascorbic, citric, oxalic acids, and EDTA-Ca; (2) atmospheric modification; and (3) combinations of the above, on the shelf life of carambola slices based on appearance, colour and polyphenol oxidase activity
Resumo:
A recently developed radioimmunoassay (RIA) for measuring insulin-like growth factor (IGF-I) in a variety of fish species was used to investigate the correlation between growth rate and circulating IGF-I concentrations of barramundi (Lates calcarifer), Atlantic salmon (Salmo salar) and Southern Bluefin tuna (Thunnus maccoyii). Plasma IGF-I concentration significantly increased with increasing ration size in barramundi and IGF-I concentration was positively correlated to growth rates obtained in Atlantic salmon (r2=0.67) and barramundi (r2=0.65) when fed a variety of diet formulations. IGF-I was also positively correlated to protein concentration (r2=0.59). This evidence suggested that measuring IGF-I concentration may provide a useful tool for monitoring fish growth rate and also as a method to rapidly assess different aquaculture diets. However, no such correlation was demonstrated in the tuna study probably due to seasonal cooling of sea surface temperature shortly before blood was sampled. Thus, some recommendations for the design and sampling strategy of nutritional trials where IGF-I concentrations are measured are discussed
Resumo:
From the findings of McPhee et al. (1988), there is an expectation that selection in the growing pig for bodyweight gain measured on restricted feeding will result in favourable responses in the rate and efficiency of growth of lean pork on different levels of feeding. This paper examines this in two lines of Australian Large White pigs which have undergone 3 years of selection for high and for low growth rate over a 6-week period starting at 50 kg liveweight. Over this test period, pigs of both lines are all fed the same total amount of grower food, restricted to an estimated 80% of average ad libitum intake. 'Animal production for a consuming world': proceedings of 9th Congress of the AAAAP Societies and 23rd Biennial Conference of the ASAP and 17th Annual Symposium of the University of Sydney, Dairy Research Foundation, (DRF). Sydney, Australia.
Resumo:
Estimates of microbial crude protein (MCP) production by ruminants, using a method based on the excretion of purine derivatives in urine, require an estimate of the excretion of endogenous purine derivatives (PD) by the animal. Current methods allocate a single value to all cattle. An experiment was carried out to compare the endogenous PD excretion in Bos taurus and high-content B. indicus (hereafter, B. indicus) cattle. Five Holstein–Friesian (B. taurus) and 5 Brahman (> 75% B. indicus) steers (mean liveweight 326 ± 3.0 kg) were used in a fasting study. Steers were fed a low-quality buffel grass (Cenchrus ciliaris; 59.4 g crude protein/kg dry matter) hay at estimated maintenance requirements for 19 days, after which hay intake was incrementally reduced for 2 days and the steers were fasted for 7 days. The excretion of PD in urine was measured daily for the last 6 days of the fasting period and the mean represented the daily endogenous PD excretion. Excretion of endogenous PD in the urine of B. indicus steers was less than half that of the B. taurus steers (190 µmol/kg W0.75.day v. 414 µmol/kg W0.75.day; combined s.e. 37.2 µmol/kg W0.75.day; P < 0.001). It was concluded that the use of a single value for endogenous PD excretion is inappropriate for use in MCP estimations and that subspecies-specific values would improve precision.
Resumo:
A study was undertaken from 2004 to 2007 to investigate factors associated with decreased efficacy of metalaxyl to manage damping-off of cucumber in Oman. A survey over six growing seasons showed that growers lost up to 14.6% of seedlings following application of metalaxyl. No resistance to metalaxyl was found among Pythium isolates. Damping-off disease in the surveyed greenhouses followed two patterns. In most (69%) greenhouses, seedling mortality was found to occur shortly after transplanting and decrease thereafter (Phase-I). However, a second phase of seedling mortality (Phase-II) appeared 9-14 d after transplanting in about 31% of the surveyed greenhouses. Analysis of the rate of biodegradation of metalaxyl in six greenhouses indicated a significant increase in the rate of metalaxyl biodegradation in greenhouses, which encountered Phase-II damping-off. The half-life of metalaxyl dropped from 93 d in soil, which received no previous metalaxyl treatment to 14 d in soil, which received metalaxyl for eight consecutive seasons, indicating an enhanced rate of metalaxyl biodegradation after repeated use. Multiple applications of metalaxyl helped reduce the appearance of Phase-II damping-off. This appears to be the first report of rapid biodegradation of metalaxyl in greenhouse soils and the first report of its association with appearance of a second phase of mortality in cucumber seedlings.
Resumo:
Physiological and genetic studies of leaf growth often focus on short-term responses, leaving a gap to whole-plant models that predict biomass accumulation, transpiration and yield at crop scale. To bridge this gap, we developed a model that combines an existing model of leaf 6 expansion in response to short-term environmental variations with a model coordinating the development of all leaves of a plant. The latter was based on: (1) rates of leaf initiation, appearance and end of elongation measured in field experiments; and (2) the hypothesis of an independence of the growth between leaves. The resulting whole-plant leaf model was integrated into the generic crop model APSIM which provided dynamic feedback of environmental conditions to the leaf model and allowed simulation of crop growth at canopy level. The model was tested in 12 field situations with contrasting temperature, evaporative demand and soil water status. In observed and simulated data, high evaporative demand reduced leaf area at the whole-plant level, and short water deficits affected only leaves developing during the stress, either visible or still hidden in the whorl. The model adequately simulated whole-plant profiles of leaf area with a single set of parameters that applied to the same hybrid in all experiments. It was also suitable to predict biomass accumulation and yield of a similar hybrid grown in different conditions. This model extends to field conditions existing knowledge of the environmental controls of leaf elongation, and can be used to simulate how their genetic controls flow through to yield.
Resumo:
In previous experiments, increased leaf-Phosphorus (P) content with increasing P supply enhanced the individual leaf expansion and water content of fresh cotton leaves in a severely drying soil. In this paper, we report on the bulk water content of leaves and its components, free and bound water, along with other measures of plant water status, in expanding cotton leaves of various ages in a drying soil with different P concentrations. The bound water in living tissue is more likely to play a major role in tolerance to abiotic stresses by maintaining the structural integrity and/or cell wall extensibility of the leaves, whilst an increased amount of free water might be able to enhance solute accumulation, leading to better osmotic adjustment and tolerance to water stress, and maintenance of the volumes of sub-cellular compartments for expansive leaf growth. There were strong correlations between leaf-P%, leaf water (total, free and bound water) and leaf expansion rate (LER) under water stress conditions in a severely drying soil. Increased soil-P enhanced the uptake of P from a drying soil, leading to increased supply of osmotically active inorganic solutes to the cells in growing leaves. This appears to have led to the accumulation of free water and more bound water, ultimately leading to increased leaf expansion rates as compared to plants in low P soil under similar water stress conditions. The greater amount of bound and free water in the high-P plants was not necessarily associated with changes in cell turgor, and appears to have maintained the cell-wall properties and extensibility under water stressed conditions in soils that are nutritionally P-deficient.
Resumo:
Fresh-cut carambola (Averrhoa carambola L.) has limited marketability due to cut-surface browning. The effect of chemical treatments (ascorbic acid, citric acid and Ca-EDTA), controlled atmosphere (0.4-20.3% O2) and the association of these processes was investigated. Post-cutting dip and low-oxygen atmospheres did not prevent discoloration or improve sensory and physicochemical parameters. However, ascorbic acid (0.5% and 1%) dips reduced polyphenol oxidase (PPO) activity during storage at 4.5 °C, with 1% ascorbic acid inducing the lowest activity. Although cut-surface browning of 'Maha' slices was not relevant, carambola slices treated with 1% ascorbic acid in association with 0.4% oxygen did not present significant browning or loss of visual quality for up to 12 days, 3 days longer than low oxygen alone (0.4% O2), thus, their quality can be significantly improved by combining both treatments.
Resumo:
The Queensland Great Barrier Reef line fishery in Australia is regulated via a range of input and output controls including minimum size limits, daily catch limits and commercial catch quotas. As a result of these measures a substantial proportion of the catch is released or discarded. The fate of these released fish is uncertain, but hook-related mortality can potentially be decreased by using hooks that reduce the rates of injury, bleeding and deep hooking. There is also the potential to reduce the capture of non-target species though gear selectivity. A total of 1053 individual fish representing five target species and three non-target species were caught using six hook types including three hook patterns (non-offset circle, J and offset circle), each in two sizes (small 4/0 or 5/0 and large 8/0). Catch rates for each of the hook patterns and sizes varied between species with no consistent results for target or non-target species. When data for all of the fish species were aggregated there was a trend for larger hooks, J hooks and offset circle hooks to cause a greater number of injuries. Using larger hooks was more likely to result in bleeding, although this trend was not statistically significant. Larger hooks were also more likely to foul-hook fish or hook fish in the eye. There was a reduction in the rates of injuries and bleeding for both target and non-target species when using the smaller hook sizes. For a number of species included in our study the incidence of deep hooking decreased when using non-offset circle hooks, however, these results were not consistent for all species. Our results highlight the variability in hook performance across a range of tropical demersal finfish species. The most obvious conservation benefits for both target and non-target species arise from using smaller sized hooks and non-offset circle hooks. Fishers should be encouraged to use these hook configurations to reduce the potential for post-release mortality of released fish.
Resumo:
Odour emission rates were measured for seven different anaerobic ponds treating piggery wastes at six to nine discrete locations across the surface of each pond on each sampling occasion over a thirteen month period. Significant variability in emission rates were observed for each pond. Measurement of a number of water quality variables in pond liquor samples collected at the same time and from the same locations as the odour samples indicated that the composition of the pond liquor was also variable. The results indicated that spatial variability was a real phenomenon and could have a significant impact on odour assessment practices. Considerably more odour samples would be required to characterise pond emissions than currently recommended by most practitioners, or regulatory agencies.
Resumo:
A restricted maximum likelihood analysis applied to an animal model showed no significant differences (P > 0.05) in pH value of the longissimus dorsi measured at 24 h post-mortem (pH24) between high and low lines of Large White pigs selected over 4 years for post-weaning growth rate on restricted feeding. Genetic and phenotypic correlations between pH24 and production and carcass traits were estimated using all performance testing records combined with the pH24 measurements (5.05-7.02) on slaughtered animals. The estimate of heritability for pH24 was moderate (0.29 ± 0.18). Genetic correlations between pH24 and production or carcass composition traits, except for ultrasonic backfat (UBF), were not significantly different from zero. UBF had a moderate, positive genetic correlation with pH24 (0.24 ± 0.33). These estimates of genetic correlations affirmed that selection for increased growth rate on restricted feeding is likely to result in limited changes in pH24 and pork quality since the selection does not put a high emphasis on reduced fatness.
Resumo:
The objective of this study was to examine genetic changes in reproduction traits in sows (total number born (TNB), number born alive (NBA), average piglet birth weight (ABW) and number of piglets weaned (NW), body weight prior to mating (MW), gestation length (GL) and daily food intake during lactation (DFI)) in lines of Large White pigs divergently selected over 4 years for high and low post-weaning growth rate on a restricted ration. Heritabilities and repeatabilities of the reproduction traits were also determined. The analyses were carried out on 913 litter records using average information-restricted maximum likelihood method applied to single trait animal models. Estimates of heritability for most traits were small, except for ABW (0·33) and MW (0·35). Estimates of repeatability were slightly higher than those of heritability for TNB, NBA and NW, but they were almost identical for ABW, MW, GL and DFI. After 4 years of selection, the high growth line sows had significantly heavier body weight prior to mating and produced significantly more piglets born alive with heavier average birth weight than the low line sows. There were, however, no statistical differences between the selected lines in TNB or NW. The lower food intake of high relative to low line sows during lactation was not significant, indicating that daily food intake differences found between grower pigs in the high and low lines (2·71 v. 2·76 kg/day, s.e.d. 0·024) on ad libitum feeding were not fully expressed in lactating sows. It is concluded that selection for growth rate on the restricted ration resulted in beneficial effects on important measures of reproductive performance of the sows.
Resumo:
Arbuscular mycorrhizal (AM) fungi, commonly found in long-term cane-growing fields in northern Queensland, are linked with both negative and positive growth responses by sugarcane (Saccharum spp.), depending on P supply. A glasshouse trial was established to examine whether AM density might also have an important influence on these growth responses. Mycorrhizal spores (Glomus clarum), isolated from a long-term cane block in northern Queensland, were introduced into a pasteurised low-P cane soil at 5 densities (0, 0.06, 0.25, 1, 4 spores/g soil) and with 4 P treatments (0, 8.2, 25, and 47 mg/kg). At 83 days after planting, sugarcane tops responded positively to P fertilizer, although responses attributable to spore density were rarely observed. In one case, addition of 4 spores/g led to a 53% yield response over those without AM at 8 mgP/kg, or a relative benefit of 17 mg P/kg. Root colonisation was reduced for plants with nil or 74 mg P/kg. For those without AM, P concentration in the topmost visible dewlap (TVD) leaf increased significantly with fertiliser P (0.07 v. 0.15%). However, P concentration increased further with the presence of AM spores. Irrespective of AM, the critical P concentration in the TVD leaf was 0.18%. This study confirms earlier reports that sugarcane is poorly responsive to AM. Spore density, up to 4 spores/g soil, appears unable to influence this responsiveness, either positively or negatively. Attempts to gain P benefits by increasing AM density through rotation seem unlikely to lead to yield increases by sugarcane. Conversely, sugarcane grown in fields with high spore densities and high plant-available P, such as long-term cane-growing soils, is unlikely to suffer a yield reduction from mycorrhizal fungi.
Resumo:
An experiment using herds of similar to 20 cows (farmlets) assessed the effects of high stocking rates on production and profitability of feeding systems based on dryland and irrigated perennial ryegrass-based pastures in a Mediterranean environment in South Australia over 4 years. A target level of milk production of 7000 L/cow.year was set, based on predicted intakes of 2.7 t DM/cow.year as concentrates, pasture intakes from 1.5 to 2.7 t/cow.year and purchased fodder. In years 1 and 2, up to 1.5 t DM/cow.year of purchased fodder was used and in years 3 and 4 the amounts were increased if necessary to enable levels of milk production per cow to be maintained at target levels. Cows in dryland farmlets calved in March to May inclusive and were stocked at 2.5, 2.9, 3.3, 3.6 and 4.1 cows/ha, while those in irrigated farmlets calved in August to October inclusive and were stocked at 4.1, 5.2, 6.3 and 7.4 cows/ha. In the first 2 years, when inputs of purchased fodder were limited, milk production per cow was reduced with higher stocking rates (P < 0.01), but in years 3 and 4 there were no differences. Mean production was 7149 kg/cow.year in years 1 and 2, and 8162 kg/cow.year in years 3 and 4. Production per hectare was very closely related to stocking rate in all years (P < 0.01), increasing from 18 to 34 t milk/ha.year for dryland farmlets (1300 to 2200 kg milk solids/ha) and from 30 to 60 t milk/ha.year for irrigated farmlets (2200 to 4100 kg milk solids/ha). Almost all of these increases were attributed to the increases in grain and purchased fodder inputs associated with the increases in stocking rate. Net pasture accumulation rates and pasture harvest were generally not altered with stocking rate, though as stocking rate increased there was a change to more of the pasture being grazed and less conserved in both dryland and irrigated farmlets. Total pasture harvest averaged similar to 8 and 14 t DM/ha.year for dryland and irrigated pastures, respectively. An exception was at the highest stocking rate under irrigation, where pugging during winter was associated with a 14% reduction in annual pasture growth. There were several indications that these high stocking rates may not be sustainable without substantial changes in management practice. There were large and positive nutrient balances and associated increases in soil mineral content (P < 0.01), especially for phosphorus and nitrate nitrogen, with both stocking rate and succeeding years. Levels under irrigation were considerably higher (up to 90 and 240 mg/kg of soil for nitrate nitrogen and phosphorus, respectively) than under dryland pastures (60 and 140 mg/kg, respectively). Soil organic carbon levels did not change with stocking rate, indicating a high level of utilisation of forage grown. Weed ingress was also high (to 22% DM) in all treatments and especially in heavily stocked irrigated pastures during winter. It was concluded the higher stocking rates used exceeded those that are feasible for Mediterranean pastures in this environment and upper levels of stocking are suggested to be 2.5 cows/ha for dryland pastures and 5.2 cows/ha for irrigated pastures. To sustain these suggested stocking rates will require further development of management practices to avoid large increases in soil minerals and weed invasion of pastures.