5 resultados para optimal pollution taxes
em eResearch Archive - Queensland Department of Agriculture
Resumo:
The size of the soil microbial biomass carbon (SMBC) has been proposed as a sensitive indicator for measuring the adverse effects of contaminants on the soil microbial community. In this study of Australian agricultural systems, we demonstrated that field variability of SMBC measured using the fumigation-extraction procedure limited its use as a robust ecotoxicological endpoint. The SMBC varied up to 4-fold across control samples collected from a single field site, due to small-scale spatial heterogeneity in the soil physicochemical environment. Power analysis revealed that large numbers of replicates (3-93) were required to identify 20% or 50% decreases in the size of the SMBC of contaminated soil samples relative to their uncontaminated control samples at the 0.05% level of statistical significance. We question the value of the routine measurement of SMBC as an ecotoxicological endpoint at the field scale, and suggest more robust and predictive microbiological indicators.
Resumo:
To remain competitive, many agricultural systems are now being run along business lines. Systems methodologies are being incorporated, and here evolutionary computation is a valuable tool for identifying more profitable or sustainable solutions. However, agricultural models typically pose some of the more challenging problems for optimisation. This chapter outlines these problems, and then presents a series of three case studies demonstrating how they can be overcome in practice. Firstly, increasingly complex models of Australian livestock enterprises show that evolutionary computation is the only viable optimisation method for these large and difficult problems. On-going research is taking a notably efficient and robust variant, differential evolution, out into real-world systems. Next, models of cropping systems in Australia demonstrate the challenge of dealing with competing objectives, namely maximising farm profit whilst minimising resource degradation. Pareto methods are used to illustrate this trade-off, and these results have proved to be most useful for farm managers in this industry. Finally, land-use planning in the Netherlands demonstrates the size and spatial complexity of real-world problems. Here, GIS-based optimisation techniques are integrated with Pareto methods, producing better solutions which were acceptable to the competing organizations. These three studies all show that evolutionary computation remains the only feasible method for the optimisation of large, complex agricultural problems. An extra benefit is that the resultant population of candidate solutions illustrates trade-offs, and this leads to more informed discussions and better education of the industry decision-makers.
Resumo:
The notion of being sure that you have completely eradicated an invasive species is fanciful because of imperfect detection and persistent seed banks. Eradication is commonly declared either on an ad hoc basis, on notions of seed bank longevity, or on setting arbitrary thresholds of 1% or 5% confidence that the species is not present. Rather than declaring eradication at some arbitrary level of confidence, we take an economic approach in which we stop looking when the expected costs outweigh the expected benefits. We develop theory that determines the number of years of absent surveys required to minimize the net expected cost. Given detection of a species is imperfect, the optimal stopping time is a trade-off between the cost of continued surveying and the cost of escape and damage if eradication is declared too soon. A simple rule of thumb compares well to the exact optimal solution using stochastic dynamic programming. Application of the approach to the eradication programme of Helenium amarum reveals that the actual stopping time was a precautionary one given the ranges for each parameter.
Resumo:
Deriving an estimate of optimal fishing effort or even an approximate estimate is very valuable for managing fisheries with multiple target species. The most challenging task associated with this is allocating effort to individual species when only the total effort is recorded. Spatial information on the distribution of each species within a fishery can be used to justify the allocations, but often such information is not available. To determine the long-term overall effort required to achieve maximum sustainable yield (MSY) and maximum economic yield (MEY), we consider three methods for allocating effort: (i) optimal allocation, which optimally allocates effort among target species; (ii) fixed proportions, which chooses proportions based on past catch data; and (iii) economic allocation, which splits effort based on the expected catch value of each species. Determining the overall fishing effort required to achieve these management objectives is a maximizing problem subject to constraints due to economic and social considerations. We illustrated the approaches using a case study of the Moreton Bay Prawn Trawl Fishery in Queensland (Australia). The results were consistent across the three methods. Importantly, our analysis demonstrated the optimal total effort was very sensitive to daily fishing costs—the effort ranged from 9500–11 500 to 6000–7000, 4000 and 2500 boat-days, using daily cost estimates of $0, $500, $750, and $950, respectively. The zero daily cost corresponds to the MSY, while a daily cost of $750 most closely represents the actual present fishing cost. Given the recent debate on which costs should be factored into the analyses for deriving MEY, our findings highlight the importance of including an appropriate cost function for practical management advice. The approaches developed here could be applied to other multispecies fisheries where only aggregated fishing effort data are recorded, as the literature on this type of modelling is sparse.