5 resultados para optical polishing machine
em eResearch Archive - Queensland Department of Agriculture
Resumo:
Replicable experimental studies using a novel experimental facility and a machine-based odour quantification technique were conducted to demonstrate the relationship between odour emission rates and pond loading rates. The odour quantification technique consisted of an electronic nose, AromaScan A32S, and an artificial neural network. Odour concentrations determined by olfactometry were used along with the AromaScan responses to train the artificial neural network. The trained network was able to predict the odour emission rates for the test data with a correlation coefficient of 0.98. Time averaged odour emission rates predicted by the machine-based odour quantification technique, were strongly correlated with volatile solids loading rate, demonstrating the increased magnitude of emissions from a heavily loaded effluent pond. However, it was not possible to obtain the same relationship between volatile solids loading rates and odour emission rates from the individual data. It is concluded that taking a limited number of odour samples over a short period is unlikely to provide a representative rate of odour emissions from an effluent pond. A continuous odour monitoring instrument will be required for that more demanding task.
Resumo:
An optical peanut yield monitor was developed, fabricated, and field-tested. The overall system includes an optical mass-flow sensor, a GPS receiver, and a data acquisition system. The concept for the mass-flow sensor is based on that of the cotton yield-monitor sensor developed previously by Thomasson and Sui (2000). A modified version of the sensor was designed to be specific to peanut mass-flow measurement. Field testing of the peanut yield monitor was conducted in Australia during the May 2003 harvest. After subsequent minor modifications, the system was more extensively tested in Mississippi in October of 2003 and November of 2004. Test results showed that the output of the peanut mass-flow sensor was very strongly correlated with the harvested load weight, and the system's performance was stable and reliable during the tests.
Resumo:
Sorghum ergot, caused by Claviceps africana, has remained a major disease problem in Australia since it was first recorded in 1996, and is the focus of a range of biological and integrated management research. Artificial inoculation using conidial suspensions is an important tool in this research. Ergot infection is greatly influenced by environmental factors, so it is important to reduce controllable sources of variation such as inoculum concentration. The use of optical density was tested as a method of quantifying conidial suspensions of C. africana, as an alternative to haemocytometer counts. This method was found to be accurate and time efficient, with possible applications in other disease systems.
Resumo:
This work was designed to provide the Australian structural radiata pine processing industry with some indications for improving stress grading methods and/or technologies to give an increase in structural grade yields, and significantly reduce processing costs without compromising product quality. To achieve this, advanced statistical techniques were used in conjunction with state-of-the-art property measurement systems applied to the same sample of sawn timber. Acoustic vibration analyses were conducted on green and dry boards. Raw data from existing in-line systems was captured on the same boards. The Metriguard HCLT stress rating system was used as the "reference" machine grading because of its current common use in the industry. A WoodEye optical scanning system and an X-ray LHG scanner were also able to provide relevant information on knots. The data set was analyzed using classical and advanced statistical tools to provide correlations between data sets, and to develop efficient strength and stiffness prediction equations. Reductions in non-structural dry volumes can be achieved..
Resumo:
Agricultural pests are responsible for millions of dollars in crop losses and management costs every year. In order to implement optimal site-specific treatments and reduce control costs, new methods to accurately monitor and assess pest damage need to be investigated. In this paper we explore the combination of unmanned aerial vehicles (UAV), remote sensing and machine learning techniques as a promising methodology to address this challenge. The deployment of UAVs as a sensor platform is a rapidly growing field of study for biosecurity and precision agriculture applications. In this experiment, a data collection campaign is performed over a sorghum crop severely damaged by white grubs (Coleoptera: Scarabaeidae). The larvae of these scarab beetles feed on the roots of plants, which in turn impairs root exploration of the soil profile. In the field, crop health status could be classified according to three levels: bare soil where plants were decimated, transition zones of reduced plant density and healthy canopy areas. In this study, we describe the UAV platform deployed to collect high-resolution RGB imagery as well as the image processing pipeline implemented to create an orthoimage. An unsupervised machine learning approach is formulated in order to create a meaningful partition of the image into each of the crop levels. The aim of this approach is to simplify the image analysis step by minimizing user input requirements and avoiding the manual data labelling necessary in supervised learning approaches. The implemented algorithm is based on the K-means clustering algorithm. In order to control high-frequency components present in the feature space, a neighbourhood-oriented parameter is introduced by applying Gaussian convolution kernels prior to K-means clustering. The results show the algorithm delivers consistent decision boundaries that classify the field into three clusters, one for each crop health level as shown in Figure 1. The methodology presented in this paper represents a venue for further esearch towards automated crop damage assessments and biosecurity surveillance.