4 resultados para non st segment elevation acute coronary syndrome
em eResearch Archive - Queensland Department of Agriculture
Resumo:
Recent studies have suggested that bats are the natural reservoir of a range of coronaviruses (CoVs), and that rhinolophid bats harbor viruses closely related to the severe acute respiratory syndrome (SARS) CoV, which caused an outbreak of respiratory illness in humans during 2002-2003. We examined the evolutionary relationships between bat CoVs and their hosts by using sequence data of the virus RNA-dependent RNA polymerase gene and the bat cytochrome b gene. Phylogenetic analyses showed multiple incongruent associations between the phylogenies of rhinolophid bats and their CoVs, which suggested that host shifts have occurred in the recent evolutionary history of this group. These shifts may be due to either virus biologic traits or host behavioral traits. This finding has implications for the emergence of SARS and for the potential future emergence of SARS-CoVs or related viruses.
Resumo:
Bats have been identified as a natural reservoir for an increasing number of emerging zoonotic viruses, including henipaviruses and variants of rabies viruses. Recently, we and another group independently identified several horse-shoe bat species (genus Rhinolophus) as the reservoir host for a large number of viruses that have a close genetic relationship with the coronavirus associated with severe acute respiratory syndrome (SARS). Our current research focused on the identification of the reservoir species for the progenitor virus of the SARS coronaviruses responsible for outbreaks during 2002-2003 and 2003-2004. In addition to SARS-like coronaviruses, many other novel bat coronaviruses, which belong to groups 1 and 2 of the 3 existing coronavirus groups, have been detected by PCR. The discovery of bat SARS-like coronaviruses and the great genetic diversity of coronaviruses in bats have shed new light on the origin and transmission of SARS coronaviruses.
Resumo:
Nearly 75% of all emerging infectious diseases (EIDs) that impact or threaten human health are zoonotic. The majority have spilled from wildlife reservoirs, either directly to humans or via domestic animals. The emergence of many can be attributed to predisposing factors such as global travel, trade, agricultural expansion, deforestation habitat fragmentation, and urbanization; such factors increase the interface and or the rate of contact between human, domestic animal, and wildlife populations, thereby creating increased opportunities for spillover events to occur. Infectious disease emergence can be regarded as primarily an ecological process. The epidemiological investigation of EIDs associated with wildlife requires a trans-disciplinary approach that includes an understanding of the ecology of the wildlife species, and an understanding of human behaviours that increase risk of exposure. Investigations of the emergence of Nipah virus in Malaysia in 1999 and severe acute respiratory syndrome (SARS) in China in 2003 provide useful case studies. The emergence of Nipah virus was associated with the increased size and density of commercial pig farms and their encroachment into forested areas. The movement of pigs for sale and slaughter in turn led to the rapid spread of infection to southern peninsular Malaysia, where the high-density, largely urban pig populations facilitated transmission to humans. Identifying the factors associated with the emergence of SARS in southern China requires an understanding of the ecology of infection both in the natural reservoir and in secondary market reservoir species. A necessary extension of understanding the ecology of the reservoir is an understanding of the trade, and of the social and cultural context of wildlife consumption. Emerging infectious diseases originating from wildlife populations will continue to threaten public health. Mitigating and managing the risk requires an appreciation of the connectedness between human, livestock and wildlife health, and of the factors and processes that disrupt the balance.
Resumo:
Myelodysplasia is a general term referring to abnormal development of the spinal cord. Unless associated with vertebral malformations, it can be difficult to distinguish clinically from other causes of spinal cord disease. These case reports describe the clinical and pathological findings in two calves with a distinctive non-progressive pelvic limb ataxia. The syndrome was observed in two calves on a large, extensively managed beef cattle property near Richmond, north Queensland. Both calves had similar clinical signs, including hindlimb ataxia with swaying of the pelvis and a well-coordinated bilateral hopping-like action. The differential diagnoses are discussed. A focal or diffuse myelodysplasia should be suspected in calves that have exhibited a non-progressive hindlimb ataxia from birth.