5 resultados para n-hexane
em eResearch Archive - Queensland Department of Agriculture
Resumo:
The male attractant pheromone of the scarab beetle Holotrichia reynaudi, an agricultural pest native to southern India, was extracted from abdominal glands of females with hexane and analyzed by gas chromatography– mass spectrometry. Field testing of the candidate chemicals, indole, phenol, and anisole, both alone and as binary mixtures, led us to conclude that anisole was the major component of the sex pheromone. Neither male nor female beetles were attracted to indole or phenol on their own. Similarly, when indole and anisole were combined, the attractiveness of the solution did not increase over that obtained with anisole alone. However, combination of phenol and anisole did alter the attractiveness of anisole, with fewer male beetles attracted to the binary mixture than to anisole on its own. The behavior of female beetles was not altered by any of the chemicals tested. Anisole is also the sex pheromone of H. consanguinea, making this the first known example of two melolonthine scarabs sharing the same pheromone.
Resumo:
An analytical method for the measurement of five naturally occurring bromophenols of sensory relevance in seafood (barramundi and prawns) is presented. The method combines simultaneous distillation−extraction followed by alkaline back extraction of a hexane extract and subsequent acetylation of the bromophenols. Analysis of the bromophenol acetates was accomplished by headspace solid phase microextraction and gas chromatography−mass spectrometry using selected ion monitoring. The addition of 13C6 bromophenol stable isotope internal standards for each of the five congeners studied permitted the accurate quantitation of 2-bromophenol, 4-bromophenol, 2,6-dibromophenol, 2,4-dibromophenol, and 2,4,6-tribromophenol down to a limit of quantification of 0.05 ng/g of fish flesh. The method indicated acceptable precision and repeatability and excellent linearity over the typical concentration range of these compounds in seafood (0.5−50 ng/g). The analytical method was applied to determine the concentration of bromophenols in a range of farmed and wild barramundi and prawns and was also used to monitor bromophenol uptake in a pilot feeding trial.
Resumo:
The present study examines patterns of heritability of plant secondary metabolites following hybridisation among three genetically homogeneous taxa of spotted gum (Corymbia henryi (S.T.Blake) K.D.Hill & L.A.S.Johnson, C. citriodora subsp. variegata (F.Muell.) K.D.Hill & L.A.S.Johnson and C. citriodora (Hook.) K.D.Hill & L.A.S.Johnson subsp. citriodora (section Maculatae), and their congener C. torelliana (F.Muell.) K.D.Hill & L.A.S.Johnson (section Torellianae)). Hexane extracts of leaves of all four parent taxa were statistically distinguishable (ANOSIM: global R = 0.976, P = 0.008). Hybridisation patterns varied among the taxa studied, with the hybrid formed with C. citriodora subsp. variegata showing an intermediate extractive profile between its parents, whereas the profiles of the other two hybrids were dominated by that of C. torelliana. These different patterns in plant secondary-metabolite inheritance may have implications for a range of plant-insect interactions.
Resumo:
The effect of dietary crude protein (CP) and additives on odour flux from broiler litter was investigated using 180 day-old Ross 308 male chicks randomly allocated to five dietary treatments with three replications of 12 birds each. A 5×3 factorial arrangement of treatments was employed. Factors were: diet (low CP, high CP, high CP+antibiotic, high CP+probiotic, high CP+saponin) and age (15, 29, 35 days). Low CP (LCP) and high CP (HCP) diets differed in CP levels by 4.5-5%. The low CP diets were supplemented with L-valine, L-isoleucine, L-arginine, L-lysine, D,L-methionine and L-threonine. The antibiotic used was Zn Bacitracin, the probiotic was a blend of three Bacillus subtilis strains and the saponin came from a blend of Yucca and Quillaja. Odorants were measured from litter headspace using a flux hood and selective ion flow tube mass spectrometry (SIFT-MS). Results were log tranformed and analysed by two-way ANOVA with repeated measures using JMP statistical software v.8, and means were separated by Tukey's HSD test at P<0.05.The results showed that LCP group produced lower flux of dimethyl amine, trimethyl amine, H2S, NH3 and phenol in litter compared to HCP group (P<0.05). Similarly, HCP+probiotic group produced lower flux of H2S (P<0.05) and HCP+saponin group produced lower flux of trimethylamine and phenol in litter compared to HCP group (P<0.05). The dietary treatments tended (P=0.065) to have higher flux of methanethiol in HCP group compared to others. There was a diet x age interaction for litter flux of diacetyl, acetoin, 3-methyl-1-butanol, 3-methylbutanal, ethanethiol, propionic acid and hexane (P<0.05). Concentrations of diacetyl, acetoin, propionic acid and hexane in litter were higher from LCP group compared to all other treatments on d 35 (P<0.05) but not on days 15 and 29. Thus, the low CP diet, Bacillus subtilis based probiotic and Yucca/Quillaja based saponin were effective in reducing the emissions of some key odorants from broiler litter.
Resumo:
The effect of dietary crude protein (CP) and additives on odor flux from meat chicken litter was investigated using 180 day-old Ross 308 male chicks randomly allocated to five dietary treatments with three replicates of 12 birds each. A 5 × 3 factorial arrangement of treatments was employed. Factors were: diet (low CP, high CP, high CP+antibiotic, high CP+probiotic, high CP+saponin) and age (15, 29, 35 days). The antibiotic used was Zn bacitracin, the probiotic was a blend of three Bacillus subtilis strains and the saponin came from a blend of Yucca and Quillaja. Odorants were collected from litter headspace with a flux hood and measured using selective ion flow tube mass spectrometry (SIFT-MS). Litter moisture, water activity (Aw), and litter headspace odorant concentrations were correlated. The results showed that low CP group produced lower flux of dimethyl amine, trimethyl amine, H2S, NH3, and phenol in litter compared to high CP group (P < 0.05). Similarly, high CP+probiotic group produced lower flux of H2S (P < 0.05) and high CP+saponin group produced lower flux of trimethylamine and phenol in litter compared to high CP group (P < 0.05). The dietary treatments tended (P = 0.065) to have higher flux of methanethiol in high CP group compared to others. There was a diet × age interaction for litter flux of diacetyl, 3-hydroxy-2-butanone (acetoin), 3-methyl-1-butanol, 3-methylbutanal, ethanethiol, propionic acid, and hexane (P < 0.05). Concentrations of diacetyl, acetoin, propionic acid, and hexane in litter were higher from low CP group compared to all other treatments on d 35 (P < 0.05) but not on d 15 and 29. A high litter moisture increased water activity (P < 0.01) and favored the emissions of methyl mercaptan, hydrogen sulfide, dimethyl sulfide, ammonia, trimethyl amine, phenol, indole, and 3-methylindole over others. Thus, the low CP diet, Bacillus subtilis based probiotic and the blend of Yucca/Quillaja saponin were effective in reducing the emissions of some key odorants from meat chicken litter.