7 resultados para musculoskeletal risks

em eResearch Archive - Queensland Department of Agriculture


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aflatoxins are highly carcinogenic mycotoxins produced by two fungi, Aspergillus flavus and A. parasiticus, under specific moisture and temperature conditions before harvest and/or during storage of a wide range of crops including maize. Modelling of interactions between host plant and environment during the season can enable quantification of preharvest aflatoxin risk and its potential management. A model was developed to quantify climatic risks of aflatoxin contamination in maize using principles previously used for peanuts. The model outputs an aflatoxin risk index in response to seasonal temperature and soil moisture during the maize grain filling period using the APSIM's maize module. The model performed well in simulating climatic risk of aflatoxin contamination in maize as indicated by a significant R2 (P ≤ 0.01) between aflatoxin risk index and the measured aflatoxin B1 in crop samples, which was 0.69 for a range of rainfed Australian locations and 0.62 when irrigated locations were also included in the analysis. The model was further applied to determine probabilities of exceeding a given aflatoxin risk in four non-irrigated maize growing locations of Queensland using 106 years of historical climatic data. Locations with both dry and hot climates had a much higher probability of higher aflatoxin risk compared with locations having either dry or hot conditions alone. Scenario analysis suggested that under non-irrigated conditions the risk of aflatoxin contamination could be minimised by adjusting sowing time or selecting an appropriate hybrid to better match the grain filling period to coincide with lower temperature and water stress conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Growing agricultural crops in wide row spacings has been widely adopted to conserve water, to control pests and diseases, and to minimise problems associated with sowing into stubble. The development of herbicide resistance combined with the advent of precision agriculture has resulted in a further reason for wide row spacings to be adopted: weed control. Increased row spacing enables two different methods of weed control to be implemented with non-selective chemical and physical control methods utilised in the wide inter-row zone, with or without selective chemicals used on the on-row only. However, continual application of herbicides and tillage on the inter-row zone brings risks of herbicide resistance, species shifts and/or changes in species dominance, crop damage, increased costs, yield losses, and more expensive weed management technology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This chapter describes poisoning associated with consumption of pyrrolizidine alkaloid (PA)-containing plants (Crotalaria spp., Heliotropium spp. and Senecio spp.) by cattle and horses in rangelands of northern Australia, as well as the risks for meat quality of PA residues and potential health hazards to consumers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Climate affects the custard apple industry in a range of ways through impacts on growth, disease risk, fruit set and industry location. Climates in Australia are influenced by surrounding oceans, and are very variable from year to year. However, amidst this variability there are significant trends, with Australian annual mean temperatures increasing since 1910, and particularly since 1950, with night-time temperatures increasing faster (0.11oC/decade) than daytime temperatures (0.06oC/decade). These temperature increases and other climate changes are expected to continue as a result of greenhouse gas emissions, with ongoing impacts on the custard apple industry. Five sites were chosen to assess possible future climate changes : Mareeba, Yeppoon, Bundaberg, Nambour and Lismore, these sites representing the extent of the majority of custard apple production in eastern Australia. A fifth site (Coffs Harbour) was selected as it is south of the current production regions. A mean warming of 0.8 to 1.2oC is anticipated over most of these sites by the year 2030, relative to 1990. This paper assesses the potential effects of climate change on custard apple production, and suggests strategies for adaptation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The research undertaken here was in response to a decision by a major food producer in about 2009 to consider establishing processing tomato production in northern Australia. This was in response to a lack of water availability in the Goulburn Valley region following the extensive drought that continued until 2011. The high price of water and the uncertainty that went with it was important in making the decision to look at sites within Queensland. This presented an opportunity to develop a tomato production model for the varieties used in the processing industry and to use this as a case study along with rice and cotton production. Following some unsuccessful early trials and difficulties associated with the Global Financial Crisis, large scale studies by the food producer were abandoned. This report uses the data that was collected prior to this decision and contrasts the use of crop modelling with simpler climatic analyses that can be undertaken to investigate the impact of climate change on production systems. Crop modelling can make a significant contribution to our understanding of the impacts of climate variability and climate change because it harnesses the detailed understanding of physiology of the crop in a way that statistical or other analytical approaches cannot do. There is a high overhead, but given that trials are being conducted for a wide range of crops for a variety of purposes, breeding, fertiliser trials etc., it would appear to be profitable to link researchers with modelling expertise with those undertaking field trials. There are few more cost-effective approaches than modelling that can provide a pathway to understanding future climates and their impact on food production.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the aim of increasing peanut production in Australia, the Australian peanut industry has recently considered growing peanuts in rotation with maize at Katherine in the Northern Territory—a location with a semi-arid tropical climate and surplus irrigation capacity. We used the well-validated APSIM model to examine potential agronomic benefits and long-term risks of this strategy under the current and warmer climates of the new region. Yield of the two crops, irrigation requirement, total soil organic carbon (SOC), nitrogen (N) losses and greenhouse gas (GHG) emissions were simulated. Sixteen climate stressors were used; these were generated by using global climate models ECHAM5, GFDL2.1, GFDL2.0 and MRIGCM232 with a median sensitivity under two Special Report of Emissions Scenarios over the 2030 and 2050 timeframes plus current climate (baseline) for Katherine. Effects were compared at three levels of irrigation and three levels of N fertiliser applied to maize grown in rotations of wet-season peanut and dry-season maize (WPDM), and wet-season maize and dry-season peanut (WMDP). The climate stressors projected average temperature increases of 1°C to 2.8°C in the dry (baseline 24.4°C) and wet (baseline 29.5°C) seasons for the 2030 and 2050 timeframes, respectively. Increased temperature caused a reduction in yield of both crops in both rotations. However, the overall yield advantage of WPDM increased from 41% to up to 53% compared with the industry-preferred sequence of WMDP under the worst climate projection. Increased temperature increased the irrigation requirement by up to 11% in WPDM, but caused a smaller reduction in total SOC accumulation and smaller increases in N losses and GHG emission compared with WMDP. We conclude that although increased temperature will reduce productivity and total SOC accumulation, and increase N losses and GHG emissions in Katherine or similar northern Australian environments, the WPDM sequence should be preferable over the industry-preferred sequence because of its overall yield and sustainability advantages in warmer climates. Any limitations of irrigation resulting from climate change could, however, limit these advantages.