12 resultados para multiplicative inverse
em eResearch Archive - Queensland Department of Agriculture
Resumo:
Genetic models partitioning additive and non-additive genetic effects for populations tested in replicated multi-environment trials (METs) in a plant breeding program have recently been presented in the literature. For these data, the variance model involves the direct product of a large numerator relationship matrix A, and a complex structure for the genotype by environment interaction effects, generally of a factor analytic (FA) form. With MET data, we expect a high correlation in genotype rankings between environments, leading to non-positive definite covariance matrices. Estimation methods for reduced rank models have been derived for the FA formulation with independent genotypes, and we employ these estimation methods for the more complex case involving the numerator relationship matrix. We examine the performance of differing genetic models for MET data with an embedded pedigree structure, and consider the magnitude of the non-additive variance. The capacity of existing software packages to fit these complex models is largely due to the use of the sparse matrix methodology and the average information algorithm. Here, we present an extension to the standard formulation necessary for estimation with a factor analytic structure across multiple environments.
Resumo:
Synthetic backcrossed-derived bread wheats (SBWs) from CIMMYT were grown in the Northwest of Mexico at Centro de Investigaciones Agrícolas del Noroeste (CIANO) and sites across Australia during three seasons. During three consecutive years Australia received “shipments” of different SBWs from CIMMYT for evaluation. A different set of lines was evaluated each season, as new materials became available from the CIMMYT crop enhancement program. These consisted of approximately 100 advanced lines (F7) per year. SBWs had been top and backcrossed to CIMMYT cultivars in the first two shipments and to Australian wheat cultivars in the third one. At CIANO, the SBWs were trialled under receding soil moisture conditions. We evaluated both the performance of each line across all environments and the genotype-by-environment interaction using an analysis that fits a multiplicative mixed model, adjusted for spatial field trends. Data were organised in three groups of multienvironment trials (MET) containing germplasm from shipment 1 (METShip1), 2 (METShip2), and 3 (METShip3), respectively. Large components of variance for the genotype × environment interaction were found for each MET analysis, due to the diversity of environments included and the limited replication over years (only in METShip2, lines were tested over 2 years). The average percentage of genetic variance explained by the factor analytic models with two factors was 50.3% for METShip1, 46.7% for METShip2, and 48.7% for METShip3. Yield comparison focused only on lines that were present in all locations within a METShip, or “core” SBWs. A number of core SBWs, crossed to both Australian and CIMMYT backgrounds, outperformed the local benchmark checks at sites from the northern end of the Australian wheat belt, with reduced success at more southern locations. In general, lines that succeeded in the north were different from those in the south. The moderate positive genetic correlation between CIANO and locations in the northern wheat growing region likely reflects similarities in average temperature during flowering, high evaporative demand, and a short flowering interval. We are currently studying attributes of this germplasm that may contribute to adaptation, with the aim of improving the selection process in both Mexico and Australia.
Resumo:
Two pot experiments were conducted in two different seasons at the University of Agricultural Science, Bangalore, India, to study (a) the relationship between chlorophyll concentration (by measuring the leaf light-transmittance characteristics using a SPAD metre) and transpiration efficiency (TE) and (b) the effect of leaf N on chlorophyll and TE relationship in peanut. In Experiment (Expt) I, six peanut genotypes with wide genetic variation for the specific leaf area (SLA) were used. In Expt II, three non-nodulating isogenic lines were used to study the effect of N levels on leaf chlorophyll concentration–TE relationship without potential confounding effects in biological nitrogen fixation. Leaf N was manipulated by applying N fertiliser in Expt II. Chlorophyll concentration, TE (g dry matter kg−1 of H2O transpired, measured using gravimetric method), specific leaf nitrogen (g N m−2, SLN), SLA (cm2 g−1), carbon isotope composition (Δ13C) were determined in the leaves sampled during the treatment period (35–55 days after sowing) in the two experiments. Results showed that the leaf chlorophyll concentration expressed as soil plant analytical development (SPAD) chlorophyll metre reading (SCMR) varied significantly among genotypes in Expt I and as a result of N application in Expt II. Changes in leaf N levels were strongly associated with changes in SCMR, TE and Δ13C. In both the experiments, a significant positive relationship between SCMR and TE with similar slopes but differing intercepts was noticed. However, correction of TE for seasonal differences in vapour pressure deficit (VPD) between the two experiments resulted in a single and stronger relationship between SCMR and TE. There was a significant inverse relationship between SCMR and Δ13C, suggesting a close linkage between chlorophyll concentration and Δ13C in peanut. This study provides the first evidence for a significant positive relationship between TE and leaf chlorophyll concentration in peanut. The study also describes the effect of growing environment on the relationships among SLA, SLN and SCMR.
Resumo:
Near infrared spectroscopy (NIRS) combined with multivariate analysis techniques was applied to assess phenol content of European oak. NIRS data were firstly collected directly from solid heartwood surfaces: in doing so, the spectra were recorded separately from the longitudinal radial and the transverse section surfaces by diffuse reflectance. The spectral data were then pretreated by several pre-processing procedures, such as multiplicative scatter correction, first derivative, second derivative and standard normal variate. The tannin contents of sawmill collected from the longitudinal radial and transverse section surfaces were determined by quantitative extraction with water/methanol (1:4, by vol). Then, total phenol contents in tannin extracts were measured by the Folin-Ciocalteu method. The NIR data were correlated against the Folin-Ciocalteu results. Calibration models built with partial least squares regression displayed strong correlation - as expressed by high determination correlation coefficient (r2) and high ratio of performance to deviation (RPD) - between measured and predicted total phenols content, and weak calibration and prediction errors (RMSEC, RMSEP). The best calibration was provided with second derivative spectra (r2 value of 0.93 for the longitudinal radial plane and of 0.91 for the transverse section plane). This study illustrates that the NIRS technique when used in conjunction with multivariate analysis could provide reliable, quick and non-destructive assessment of European oak heartwood extractives.
Resumo:
The ability to predict phenology and canopy development is critical in crop models used for simulating likely consequences of alternative crop management and cultivar choice strategies. Here we quantify and contrast the temperature and photoperiod responses for phenology and canopy development of a diverse range of elite Indian and Australian sorghum genotypes (hybrid and landrace). Detailed field experiments were undertaken in Australia and India using a range of genotypes, sowing dates, and photoperiod extension treatments. Measurements of timing of developmental stages and leaf appearance were taken. The generality of photo-thermal approaches to modelling phenological and canopy development was tested. Environmental and genotypic effects on rate of progression from emergence to floral initiation (E-FI) were explained well using a multiplicative model, which combined the intrinsic development rate (Ropt), with responses to temperature and photoperiod. Differences in Ropt and extent of the photoperiod response explained most genotypic effects. Average leaf initiation rate (LIR), leaf appearance rate and duration of the phase from anthesis to physiological maturity differed among genotypes. The association of total leaf number (TLN) with photoperiod found for all genotypes could not be fully explained by effects on development and LIRs. While a putative effect of photoperiod on LIR would explain the observations, other possible confounding factors, such as air-soil temperature differential and the nature of model structure were considered and discussed. This study found a generally robust predictive capacity of photo-thermal development models across diverse ranges of both genotypes and environments. Hence, they remain the most appropriate models for simulation analysis of genotype-by-management scenarios in environments varying broadly in temperature and photoperiod.
Resumo:
In the wheatbelt of eastern Australia, rainfall shifts from winter dominated in the south (South Australia, Victoria) to summer dominated in the north (northern New South Wales, southern Queensland). The seasonality of rainfall, together with frost risk, drives the choice of cultivar and sowing date, resulting in a flowering time between October in the south and August in the north. In eastern Australia, crops are therefore exposed to contrasting climatic conditions during the critical period around flowering, which may affect yield potential, and the efficiency in the use of water (WUE) and radiation (RUE). In this work we analysed empirical and simulated data, to identify key climatic drivers of potential water- and radiation-use efficiency, derive a simple climatic index of environmental potentiality, and provide an example of how a simple climatic index could be used to quantify the spatial and temporal variability in resource-use efficiency and potential yield in eastern Australia. Around anthesis, from Horsham to Emerald, median vapour pressure deficit (VPD) increased from 0.92 to 1.28 kPa, average temperature increased from 12.9 to 15.2°C, and the fraction of diffuse radiation (FDR) decreased from 0.61 to 0.41. These spatial gradients in climatic drivers accounted for significant gradients in modelled efficiencies: median transpiration WUE (WUEB/T) increased southwards at a rate of 2.6% per degree latitude and median RUE increased southwards at a rate of 1.1% per degree latitude. Modelled and empirical data confirmed previously established relationships between WUEB/T and VPD, and between RUE and photosynthetically active radiation (PAR) and FDR. Our analysis also revealed a non-causal inverse relationship between VPD and radiation-use efficiency, and a previously unnoticed causal positive relationship between FDR and water-use efficiency. Grain yield (range 1-7 t/ha) measured in field experiments across South Australia, New South Wales, and Queensland (n = 55) was unrelated to the photothermal quotient (Pq = PAR/T) around anthesis, but was significantly associated (r2 = 0.41, P < 0.0001) with newly developed climatic index: a normalised photothermal quotient (NPq = Pq . FDR/VPD). This highlights the importance of diffuse radiation and vapour pressure deficit as sources of variation in yield in eastern Australia. Specific experiments designed to uncouple VPD and FDR and more mechanistic crop models might be required to further disentangle the relationships between efficiencies and climate drivers.
Resumo:
The highly variable flagellin-encoding flaA gene has long been used for genotyping Campylobacter jejuni and Campylobacter coli. High-resolution melting (HRM) analysis is emerging as an efficient and robust method for discriminating DNA sequence variants. The objective of this study was to apply HRM analysis to flaA-based genotyping. The initial aim was to identify a suitable flaA fragment. It was found that the PCR primers commonly used to amplify the flaA short variable repeat (SVR) yielded a mixed PCR product unsuitable for HRM analysis. However, a PCR primer set composed of the upstream primer used to amplify the fragment used for flaA restriction fragment length polymorphism (RFLP) analysis and the downstream primer used for flaA SVR amplification generated a very pure PCR product, and this primer set was used for the remainder of the study. Eighty-seven C. jejuni and 15 C. coli isolates were analyzed by flaA HRM and also partial flaA sequencing. There were 47 flaA sequence variants, and all were resolved by HRM analysis. The isolates used had previously also been genotyped using single-nucleotide polymorphisms (SNPs), binary markers, CRISPR HRM, and flaA RFLP.flaA HRM analysis provided resolving power multiplicative to the SNPs, binary markers, and CRISPR HRM and largely concordant with the flaA RFLP. It was concluded that HRM analysis is a promising approach to genotyping based on highly variable genes.
Resumo:
Crop models for herbaceous ornamental species typically include functions for temperature and photoperiod responses, but very few incorporate vernalization, which is a requirement of many traditional crops. This study investigated the development of floriculture crop models, which describe temperature responses, plus photoperiod or vernalization requirements, using Australian native ephemerals Brunonia australis and Calandrinia sp. A novel approach involved the use of a field crop modelling tool, DEVEL2. This optimization program estimates the parameters of selected functions within the development rate models using an iterative process that minimizes sum of squares residual between estimated and observed days for the phenological event. Parameter profiling and jack-knifing are included in DEVEL2 to remove bias from parameter estimates and introduce rigour into the parameter selection process. Development rate of B. australis from planting to first visible floral bud (VFB) was predicted using a multiplicative approach with a curvilinear function to describe temperature responses and a broken linear function to explain photoperiod responses. A similar model was used to describe the development rate of Calandrinia sp., except the photoperiod function was replaced with an exponential vernalization function, which explained a facultative cold requirement and included a coefficient for determining the vernalization ceiling temperature. Temperature was the main environmental factor influencing development rate for VFB to anthesis of both species and was predicted using a linear model. The phenology models for B. australis and Calandrinia sp. described development rate from planting to VFB and from VFB to anthesis in response to temperature and photoperiod or vernalization and may assist modelling efforts of other herbaceous ornamental plants. In addition to crop management, the vernalization function could be used to identify plant communities most at risk from predicted increases in temperature due to global warming.
Resumo:
The in vivo faecal egg count reduction test (FECRT) is the most commonly used test to detect anthelmintic resistance (AR) in gastrointestinal nematodes (GIN) of ruminants in pasture based systems. However, there are several variations on the method, some more appropriate than others in specific circumstances. While in some cases labour and time can be saved by just collecting post-drench faecal worm egg counts (FEC) of treatment groups with controls, or pre- and post-drench FEC of a treatment group with no controls, there are circumstances when pre- and post-drench FEC of an untreated control group as well as from the treatment groups are necessary. Computer simulation techniques were used to determine the most appropriate of several methods for calculating AR when there is continuing larval development during the testing period, as often occurs when anthelmintic treatments against genera of GIN with high biotic potential or high re-infection rates, such as Haemonchus contortus of sheep and Cooperia punctata of cattle, are less than 100% efficacious. Three field FECRT experimental designs were investigated: (I) post-drench FEC of treatment and controls groups, (II) pre- and post-drench FEC of a treatment group only and (III) pre- and post-drench FEC of treatment and control groups. To investigate the performance of methods of indicating AR for each of these designs, simulated animal FEC were generated from negative binominal distributions with subsequent sampling from the binomial distributions to account for drench effect, with varying parameters for worm burden, larval development and drench resistance. Calculations of percent reductions and confidence limits were based on those of the Standing Committee for Agriculture (SCA) guidelines. For the two field methods with pre-drench FEC, confidence limits were also determined from cumulative inverse Beta distributions of FEC, for eggs per gram (epg) and the number of eggs counted at detection levels of 50 and 25. Two rules for determining AR: (1) %reduction (%R) < 95% and lower confidence limit <90%; and (2) upper confidence limit <95%, were also assessed. For each combination of worm burden, larval development and drench resistance parameters, 1000 simulations were run to determine the number of times the theoretical percent reduction fell within the estimated confidence limits and the number of times resistance would have been declared. When continuing larval development occurs during the testing period of the FECRT, the simulations showed AR should be calculated from pre- and post-drench worm egg counts of an untreated control group as well as from the treatment group. If the widely used resistance rule 1 is used to assess resistance, rule 2 should also be applied, especially when %R is in the range 90 to 95% and resistance is suspected.
Resumo:
Phosphine resistance alleles might be expected to negatively affect energy demanding activities such as walking and flying, because of the inverse relationship between phosphine resistance and respiration. We used an activity monitoring system to quantify walking of Rhyzopertha dominica (F.) and a flight chamber to estimate their propensity for flight initiation. No significant difference in the duration of walking was observed between the strongly resistant, weakly resistant, and susceptible strains of R. dominica we tested, and females walked significantly more than males regardless of genotype. The walking activity monitor revealed no pattern of movement across the day and no particular time of peak activity despite reports of peak activity of R. dominica and Tribolium castaneum (Herbst) under field conditions during dawn and dusk. Flight initiation was significantly higher for all strains at 28 degrees C and 55% relative humidity than at 25, 30, 32, and 35 degrees C in the first 24 h of placing beetles in the flight chamber. Food deprivation and genotype had no significant effect on flight initiation. Our results suggest that known resistance alleles in R. dominica do not affect insect mobility and should therefore not inhibit the dispersal of resistant insects in the field.
Resumo:
Efficient ways to re-establish pastures are needed on land that requires a rotation between pastures and crops. We conducted trials in southern inland Queensland with a range of tropical perennial grasses sown into wheat stubble that was modified in various ways. Differing seedbed preparations involved cultivation or herbicide sprays, with or without fertilizer at sowing. Seed was broadcast and sowing time ranged from spring through to autumn on 3 different soil types. Seed quality and post-sowing rainfall were major determinants of the density of sown grass plants in the first year. Light cultivation sometimes enhanced establishment compared with herbicide spraying of standing stubble, most often on harder-setting soils. A nitrogen + phosphorus mixed fertilizer rarely produced any improvement in sown grass establishment and sometimes increased weed competition. The effects were similar for all types of grass seed from hairy fascicles to large, smooth panicoid seeds and minute Eragrostis seeds. There was a strong inverse relationship between the initial density of sown grass established and the level of weed competition.
Resumo:
AbstractObjectives Decision support tools (DSTs) for invasive species management have had limited success in producing convincing results and meeting users' expectations. The problems could be linked to the functional form of model which represents the dynamic relationship between the invasive species and crop yield loss in the DSTs. The objectives of this study were: a) to compile and review the models tested on field experiments and applied to DSTs; and b) to do an empirical evaluation of some popular models and alternatives. Design and methods This study surveyed the literature and documented strengths and weaknesses of the functional forms of yield loss models. Some widely used models (linear, relative yield and hyperbolic models) and two potentially useful models (the double-scaled and density-scaled models) were evaluated for a wide range of weed densities, maximum potential yield loss and maximum yield loss per weed. Results Popular functional forms include hyperbolic, sigmoid, linear, quadratic and inverse models. Many basic models were modified to account for the effect of important factors (weather, tillage and growth stage of crop at weed emergence) influencing weed–crop interaction and to improve prediction accuracy. This limited their applicability for use in DSTs as they became less generalized in nature and often were applicable to a much narrower range of conditions than would be encountered in the use of DSTs. These factors' effects could be better accounted by using other techniques. Among the model empirically assessed, the linear model is a very simple model which appears to work well at sparse weed densities, but it produces unrealistic behaviour at high densities. The relative-yield model exhibits expected behaviour at high densities and high levels of maximum yield loss per weed but probably underestimates yield loss at low to intermediate densities. The hyperbolic model demonstrated reasonable behaviour at lower weed densities, but produced biologically unreasonable behaviour at low rates of loss per weed and high yield loss at the maximum weed density. The density-scaled model is not sensitive to the yield loss at maximum weed density in terms of the number of weeds that will produce a certain proportion of that maximum yield loss. The double-scaled model appeared to produce more robust estimates of the impact of weeds under a wide range of conditions. Conclusions Previously tested functional forms exhibit problems for use in DSTs for crop yield loss modelling. Of the models evaluated, the double-scaled model exhibits desirable qualitative behaviour under most circumstances.