2 resultados para multi-component and multi-site adsorption
em eResearch Archive - Queensland Department of Agriculture
Resumo:
The effect of different fungicide programs on grey mould (caused by Botrytis cinerea) and stem-end rot (caused by Gnomoniopsis fructicola) affecting strawberry plants (Fragaria ×ananassa cv. Festival) was studied in subtropical Australia over three years. The treatments involved a range of different synthetic multi- and single-site fungicides with different modes of action, a plant-defence promoter, plant extracts (lupin and rhubarb), organic acids, fatty acids, a salt, two strains of Bacillus subtilis, and single strains of B. amyloliquefaciens, Streptomyces lydicus and Trichoderma harzianum. Standard programs based on captan and thiram alternated, and applied with iprodione, fenhexamid, cyprodinil + fludioxonil, and penthiopyrad resulted in 3–4 % of unmarketable fruit compared with 25–38 % in the water-treated controls. There was no difference in the level of disease suppression when five or thirteen applications of single-site fungicides were rotated with the two multi-site fungicides. The incidence of unmarketable fruit was similar to the standard programs using isopyrazam (in 1 year out of 2), or penthiopyrad, fluazinam, chlorothalonil or thiram alone (in 1 year out of 1). The other fungicide programs were generally less effective. There were strong relationships between marketable yield and the incidence of unmarketable fruit over the three years (R2s = 0.82–0.93). A strategy based on thiram and captan applied alternately, with reduced applications of single-site fungicides is recommended and should reduce the chance of resistance to single-site fungicides becoming widespread in populations of the grey mould fungus. Although the program based on thiram alone had a similar incidence of unmarketable fruit as the standard program, repeated weekly applications of thiram are not recommended as they may cause unacceptable residues in the fruit. There were issues with some of the other fungicides due to phytotoxicity, residues, or difficulties with registering new fungicides that are in the same chemical group as currently registered products.
Resumo:
Australian forest industries have a long history of export trade of a wide range of products from woodchips (for paper manufacturing), sandalwood (essential oils, carving and incense) to high value musical instruments, flooring and outdoor furniture. For the high value group, fluctuating environmental conditions brought on by changes in temperature and relative humidity, can lead to performance problems due to consequential swelling, shrinkage and/or distortion of the wood elements. A survey determined the types of value-added products exported, including species and dimensions packaging used and export markets. Data loggers were installed with shipments to monitor temperature and relative humidity conditions. These data were converted to timber equilibrium moisture content values to provide an indication of the environment that the wood elements would be acclimatising to. The results of the initial survey indicated that primary high value wood export products included guitars, flooring, decking and outdoor furniture. The destination markets were mainly located in the northern hemisphere, particularly the United States of America, China, Hong Kong, Europe (including the United Kingdom), Japan, Korea and the Middle East. Other regions importing Australian-made wooden articles were south-east Asia, New Zealand and South Africa. Different timber species have differing rates of swelling and shrinkage, so the types of timber were also recorded during the survey. Results from this work determined that the major species were ash-type eucalypts from south-eastern Australia (commonly referred to in the market as Tasmanian oak), jarrah from Western Australia, spotted gum, hoop pine, white cypress, black butt, brush box and Sydney blue gum from Queensland and New South Wales. The environmental conditions data indicated that microclimates in shipping containers can fluctuate extensively during shipping. Conditions at the time of manufacturing were usually between 10 and 12% equilibrium moisture content, however conditions during shipping could range from 5 (very dry) to 20% (very humid). The packaging systems incorporated were reported to be efficient at protecting the wooden articles from damage during transit. The research highlighted the potential risk for wood components to ‘move’ in response to periods of drier or more humid conditions than those at the time of manufacturing, and the importance of engineering a packaging system that can account for the environmental conditions experienced in shipping containers. Examples of potential dimensional changes in wooden components were calculated based on published unit shrinkage data for key species and the climatic data returned from the logging equipment. The information highlighted the importance of good design to account for possible timber movement during shipping. A timber movement calculator was developed to allow designers to input component species, dimensions, site of manufacture and destination, to see validate their product design.