45 resultados para molecular phylogeny
em eResearch Archive - Queensland Department of Agriculture
Resumo:
Graminicolous downy mildews (GDM) are an understudied, yet economically important, group of plant pathogens, which are one of the major constraints to poaceous crops in the tropics and subtropics. Here we present a first molecular phylogeny based on cox2 sequences comprising all genera of the GDM currently accepted, with both lasting (Graminivora, Poakatesthia, and Viennotia) and evanescent (Peronosclerospora, Sclerophthora, and Sclerospora) sporangiophores. In addition, all other downy mildew genera currently accepted, as well as a representative sample of other oomycete taxa, have been included. It was shown that all genera of the GDM have had a long, independent evolutionary history, and that the delineation between Peronosclerospora and Sclerospora is correct. Sclerophthora was found to be a particularly divergent taxon nested within a paraphyletic Phytophthora, but without support. The results confirm that the placement of Peronosclerospora and Sclerospora in the Saprolegniomycetidae is incorrect. Sclerophthora is not closely related to Pachymetra of the family Verrucalvaceae, and also does not belong to the Saprolegniomycetidae, but shows close affinities to the Peronosporaceae. In addition, all GDM are interspersed throughout the Peronosporaceae s lat., suggesting that a separate family for the Sclerosporaceae might not be justified.
Resumo:
Novel species of microfungi described in the present study include the following from Australia: Catenulostroma corymbiae from Corymbia, Devriesia stirlingiae from Stirlingia, Penidiella carpentariae from Carpentaria, Phaeococcomyces eucalypti from Eucalyptus, Phialophora livistonae from Livistona, Phyllosticta aristolochiicola from Aristolochia, Clitopilus austroprunulus on sclerophyll forest litter of Eucalyptus regnans and Toxicocladosporium posoqueriae from Posoqueria. Several species are also described from South Africa, namely: Ceramothyrium podocarpi from Podocarpus, Cercospora chrysanthemoides from Chrysanthemoides, Devriesia shakazului from Aloe, Penidiella drakensbergensis from Protea, Strelitziana cliviae from Clivia and Zasmidium syzygii from Syzygium. Other species include Bipolaris microstegii from Microstegium and Synchaetomella acerina from Acer (USA), Brunneiapiospora austropalmicola from Rhopalostylis (New Zealand), Calonectria pentaseptata from Eucalyptus and Macadamia (Vietnam), Ceramothyrium melastoma from Melastoma (Indonesia), Collembolispora aristata from stream foam (Czech Republic), Devriesia imbrexigena from glazed decorative tiles (Portugal), Microcyclospora rhoicola from Rhus (Canada), Seiridium phylicae from Phylica (Tristan de Cunha, Inaccessible Island), Passalora lobeliaefistulosis from Lobelia (Brazil) and Zymoseptoria verkleyi from Poa (The Netherlands). Valsalnicola represents a new ascomycete genus from Alnus (Austria) and Parapenidiella a new hyphomycete genus from Eucalyptus (Australia). Morphological and culture characteristics along with ITS DNA barcodes are also provided. © 2012 Nationaal Herbarium Nederland & Centraalbureau voor Schimmelcultures.
Resumo:
Novel species of fungi described in the present study include the following from South Africa: Alanphillipsia aloeicola from Aloe sp., Arxiella dolichandrae from Dolichandra unguiscati, Ganoderma austroafricanum from Jacaranda mimosifolia, Phacidiella podocarpi and Phaeosphaeria podocarpi from Podocarpus latifolius, Phyllosticta mimusopisicola from Mimusops zeyheri and Sphaerulina pelargonii from Pelargonium sp. Furthermore, Barssia maroccana is described from Cedrus atlantica (Morocco), Codinaea pini from Pinus patula (Uganda), Crucellisporiopsis marquesiae from Marquesia acuminata (Zambia), Dinemasporium ipomoeae from Ipomoea pes-caprae (Vietnam), Diaporthe phragmitis from Phragmites australis (China), Marasmius vladimirii from leaf litter (India), Melanconium hedericola from Hedera helix (Spain), Pluteus albotomentosus and Pluteus extremiorientalis from a mixed forest (Russia), Rachicladosporium eucalypti from Eucalyptus globulus (Ethiopia), Sistotrema epiphyllum from dead leaves of Fagus sylvatica in a forest (The Netherlands), Stagonospora chrysopyla from Scirpus microcarpus (USA) and Trichomerium dioscoreae from Dioscorea sp. (Japan). Novel species from Australia include: Corynespora endiandrae from Endiandra introrsa, Gonatophragmium triuniae from Triunia youngiana, Penicillium coccotrypicola from Archontophoenix cunninghamiana and Phytophthora moyootj from soil. Novelties from Iran include Neocamarosporium chichastianum from soil and Seimatosporium pistaciae from Pistacia vera, Xenosonderhenia eucalypti and Zasmidium eucalyptigenum are newly described from Eucalyptus urophylla in Indonesia. Diaporthe acaciarum and Roussoella acacia are newly described from Acacia tortilis in Tanzania. New species from Italy include Comoclathris spartii from Spartium junceum and Phoma tamaricicola from Tamarix gallica. Novel genera include (Ascomycetes): Acremoniopsis from forest soil and Collarina from water sediments (Spain), Phellinocrescentia from a Phellinus sp. (French Guiana), Neobambusicola from Strelitzia nicolai (South Africa), Neocladophialophora from Quercus robur (Germany), Neophysalospora from Cotymbia henryi (Mozambique) and Xenophaeosphaeria from Grewia sp. (Tanzania). Morphological and culture characteristics along with ITS DNA barcodes are provided for all taxa.
Resumo:
The black rot disease of Vitis species and other host genera of Vitacease is caused by Phyllosticta ampelicida and allied taxa which is considered to be a species complex. In this paper, we introduce four new species of Phyllosticta, including two from the P. ampelicida complex, based on a polyphasic characterization including disease symptoms and host association, morphology, and molecular phylogeny. The phylogenetic analysis was conducted based on the ribosomal internal transcribed spacer (ITS) region and a combined multi-locus alignment of the ITS, actin (ACT), partial translation elongation factor 1-alpha (TEF-1), and glyceraldehydes 3-phosphate dehydrogenase (GPDH) gene regions. Our study confirms the phylogenetic distinctions of the four new species, as well as their phenotypic differences with known species in the genus.
Resumo:
Novel species of fungi described in the present study include the following from Australia: Neoseptorioides eucalypti gen. & sp. nov. from Eucalyptus radiata leaves, Phytophthora gondwanensis from soil, Diaporthe tulliensis from rotted stem ends of Theobroma cacao fruit, Diaporthe vawdreyi from fruit rot of Psidium guajava, Magnaporthiopsis agrostidis from rotted roots of Agrostis stolonifera and Semifissispora natalis from Eucalyptus leaf litter. Furthermore, Neopestalotiopsis egyptiaca is described from Mangifera indica leaves (Egypt), Roussoella mexicana from Coffea arabica leaves (Mexico), Calonectria monticola from soil (Thailand), Hygrocybe jackmanii from littoral sand dunes (Canada), Lindgomyces madisonensis from submerged decorticated wood (USA), Neofabraea brasiliensis from Malus domestica (Brazil), Geastrum diosiae from litter (Argentina), Ganoderma wiiroense on angiosperms (Ghana), Arthrinium gutiae from the gut of a grasshopper (India), Pyrenochaeta telephoni from the screen of a mobile phone (India) and Xenoleptographium phialoconidium gen. & sp. nov. on exposed xylem tissues of Gmelina arborea (Indonesia). Several novelties are introduced from Spain, namely Psathyrella complutensis on loamy soil, Chlorophyllum lusitanicum on nitrified grasslands (incl. Chlorophyllum arizonicum comb. nov.), Aspergillus citocrescens from cave sediment and Lotinia verna gen. & sp. nov. from muddy soil. Novel foliicolous taxa from South Africa include Phyllosticta carissicola from Carissa macrocarpa, Pseudopyricularia hagahagae from Cyperaceae and Zeloasperisporium searsiae from Searsia chirindensis. Furthermore, Neophaeococcomyces is introduced as a novel genus, with two new combinations, N. aloes and N. catenatus. Several foliicolous novelties are recorded from La Réunion, France, namely Ochroconis pandanicola from Pandanus utilis, Neosulcatispora agaves gen. & sp. nov. from Agave vera-cruz, Pilidium eucalyptorum from Eucalyptus robusta, Strelitziana syzygii from Syzygium jambos (incl. Strelitzianaceae fam. nov.) and Pseudobeltrania ocoteae from Ocotea obtusata (Beltraniaceae emend.). Morphological and culture characteristics along with ITS DNA barcodes are provided for all taxa.
Resumo:
Diaporthe (syn. Phomopsis) species are well-known saprobes, endophytes or pathogens on a range of plants. Several species have wide host ranges and multiple species may sometimes colonise the same host species. This study describes eight novel Diaporthe species isolated from live and/or dead tissue from the broad acre crops lupin, maize, mungbean, soybean and sunflower, and associated weed species in Queensland and New South Wales, as well as the environmental weed bitou bush (Chrysanthemoides monilifera subsp. rotundata) in eastern Australia. The new taxa are differentiated on the basis of morphology and DNA sequence analyses based on the nuclear ribosomal internal transcribed spacer region, and part of the translation elongation factor-1α and ß-tubulin genes. The possible agricultural significance of live weeds and crop residues ('green bridges') as well as dead weeds and crop residues ('brown bridges') in aiding survival of the newly described Diaporthe species is discussed.
Resumo:
Endoraecium is a genus of rust fungi that infects several species of Acacia in Australia, South-East Asia and Hawaii. This study investigated the systematics of Endoraecium from 55 specimens in Australia based on a combined morphological and molecular approach. Phylogenetic analyses were conducted on partitioned datasets of loci from ribosomal and mitochondrial DNA. The recovered molecular phylogeny supported a recently published taxonomy based on morphology and host range that divided Endoraecium digitatum into five species. Spore morphology is synapomorphic and there is evidence Endoraecium co-evolved with its Acacia hosts. The broad host ranges of E. digitatum, E. parvum, E. phyllodiorum and E. violae-faustiae are revised in light of this study, and nine new species of Endoraecium are described from Australia based on host taxonomy, morphology and phylogenetic concordance.
Resumo:
Simmonds introduced Colletotrichum acutatum in 1965, validated in 1968, with a broad concept, as demonstrated by the selection of several type specimens from a range of hosts. This has created some confusion in the species concept and identification of C. acutatum. There are no viable ex-type cultures of C. acutatum and furthermore there are no existing cultures of C. acutatum on Carica papaya from the type locality in south-east Queensland. The application of molecular phylogenetic studies to isolates of C. acutatum is only meaningful if the taxonomy is stable and species are properly named. In order to clarify the species concept of C. acutatum, an isolate of Colletotrichum acutatum from Carica papaya from Yandina in Southeast Queensland (Australia) is designated as an epitype. A detailed morphological description is provided. Phylogenies based on a combined ITS and beta-tubulin gene analysis indicate that C. acutatum bears close phylogenetic affinities to C. gloeosporioides and C. capsici. Results also indicate that C. acutatum is monophyletic and there is a close relationship between the epitype and other Australian C. acutatum isolates from Carica papaya. Molecular data, however did not provide further evidence to properly elucidate the taxonomie affinities of C. acutatum especially the holotype and epitype. Our studies indicate that given the complexity of the genus Colletotrichum, there is a need to check previously described type specimens and redesign neotypes where necessary in order to clarify taxonomie uncertainties.
Resumo:
Fusarium oxysporum f. sp. cubense (Foc), causal agent of fusarium wilt of banana, is among the most destructive pathogens of banana and plantain. The development of a molecular diagnostic capable of reliably distinguishing between the various races of the pathogen is of key importance to disease management. However, attempts to distinguish isolates using the standard molecular loci typically used for fungal phylogenetics have been complicated by a poor correlation between phylogeny and pathogenicity. Among the available alternative loci are several putative effector genes, known as SIX genes, which have been successfully used to differentiate the three races of F. oxysporum f. sp. lycopersici. In this study, an international collection of Foc isolates was screened for the presence of the putative effector SIX8. Using a PCR and sequencing approach, variation in Foc-SIX8 was identified which allowed race 4 to be differentiated from race 1 and 2 isolates, and tropical and subtropical race 4 isolates to be distinguished from one another.
Resumo:
The ecology of the uncultured, but large and morphologically conspicuous, rumen bacterium Oscillospira spp. was studied. Oscillospira-specific 16S rRNA gene sequences were detected in North American domestic cattle, sheep from Australia and Japan, and Norwegian reindeer. Phylogenetic analysis of the sequences obtained allowed definition of three operational taxonomic units within the Oscillospira clade. Consistent with this genetic diversity, we observed atypical smaller morphotypes by using an Oscillospira-specific fluorescence in situ hybridization probe. Despite the visual disappearance of typical large Oscillospira morphotypes, the presence of Oscillospira spp. was still detected by Oscillospira-specific PCR in the rumen of cattle and sheep. These observations suggest the broad presence of Oscillospira species in various rumen ecosystems with the level, and most likely the morphological form, dependent on diet. An ecological analysis based on enumeration of the morphologically conspicuous, large-septate form confirms that the highest counts are associated with the feeding of fresh forage diets to cattle and sheep and in two different subspecies of reindeer investigated.
Resumo:
A new tribe, the Stereomerini, is established for four unusual genera: Stereomera Arrow, Termitaxis Krikken, Australoxenella n.gen., and Bruneixenus n.gen. The previously described genera are monotypic, as is Bruneixenus, the type species being B. squamosus n.sp. from Brunei. Australoxenella contains two new species, A. humptydooensis, type species, and A. bathurstensis, both from the Northern Territory, Australia. The relationships of the new tribe are analyzed and compared with the most closely related tribe, the Rhyparini, in the Aphodiinae. The tribe Rhyparini is redefined, and the genus Notocaulus Quedenfeldt is transferred to the Eupariini. A key to genera in both the Stereomerini and the Rhyparini is presented, important characters are illustrated, a cladogram is given, and convergence is discussed.
Resumo:
The cDNAs coding for the brain GnRHs (AY373449-51), pituitary GH, SL and PRL, and liver IGFs (AY427954-5) were isolated. Partial cDNA sequences of the brain (Cyp19b) and gonadal (Cyp19a) aromatases have also been obtained. These tools would be utilized to study the endocrine regulation of puberty in the grey mullet.
Resumo:
A molecular marker-based map of perennial ryegrass (Lolium perenne L.) has been constructed through the use of polymorphisms associated with expressed sequence tags (ESTs). A pair-cross between genotypes from a North African ecotype and the cultivar Aurora was used to generate a two-way pseudo-testcross population. A selection of 157 cDNAs assigned to eight different functional categories associated with agronomically important biological processes was used to detect polymorphic EST–RFLP loci in the F1(NA6 × AU6) population. A comprehensive set of EST–SSR markers was developed from the analysis of 14,767 unigenes, with 310 primer pairs showing efficient amplification and detecting 113 polymorphic loci. Two parental genetic maps were produced: the NA6 genetic map contains 88 EST–RFLP and 71 EST–SSR loci with a total map length of 963 cM, while the AU6 genetic map contains 67 EST–RFLP and 58 EST–SSR loci with a total map length of 757 cM. Bridging loci permitted the alignment of homologous chromosomes between the parental maps, and a sub-set of genomic DNA-derived SSRs was used to relate linkage groups to the perennial ryegrass reference map. Regions of segregation distortion were identified, in some instances in common with other perennial ryegrass maps. The EST-derived marker-based map provides the basis for in silico comparative genetic mapping, as well as the evaluation of co-location between QTLs and functionally associated genetic loci.
Resumo:
A study was undertaken in 2004 and 2005 to characterize pathogens associated with damping-off of greenhouse-grown cucumber seedlings in 13 districts in Oman. Identification of Pythium to the species level was based on sequences of the internal transcribed spacer (ITS) of the ribosomal DNA. Of the 98 Pythium isolates collected during the survey, Pythium aphanidermatum, P. spinosum, P. splendens and P. oligandrum accounted for 76%, 22%, 1% and 1%, respectively. Pythium aphanidermatum was isolated from all of the districts, while P. spinosum was isolated from seven districts. Pathogenicity tests showed inter- and intraspecific variation in aggressiveness between Pythium species. Pythium aphanidermatum, P. spinosum and P. splendens were found to be highly aggressive at 25°C. However, the aggressiveness of P. spinosum decreased when the temperature was raised to 30°C, which was found to correspond to the lower frequency of isolation of P. spinosum in the warmer seasons, compared to the cooler time of the year. Pythium aphanidermatum exhibited limited intraspecific variation in the sequences of the ITS region of the rDNA and showed 100% similarity to the corresponding P. aphanidermatum sequences from GenBank. The ITS sequence data, as well as morphological characteristics of P. spinosum isolates, showed a high level of similarity within and between P. spinosum and P. kunmingense, and suggested that the two species were synonymous. This study represents the first report of P. spinosum, P. splendens and P. oligandrum in Oman.
Resumo:
This work was prompted by the need to be able to identify the invasive mussel species, Perna viridis, in tropical Australian seas using techniques that do not rely solely on morphology. DNA-based molecular methods utilizing a polymerase chain reaction (PCR) approach were developed to distinguish unambiguously between the three species in the genus Perna. Target regions were portions of two mitochondrial genes, cox1 and nad4, and the intergenic spacer between these that occurs in at least two Perna species. Based on interspecific sequence comparisons of the nad4 gene, a conserved primer has been designed that can act as a forward primer in PCRs for any Perna species. Four reverse primers have also been designed, based on nad4 and intergenic spacer sequences, which yield species-specific products of different lengths when paired with the conserved forward primer. A further pair of primers has been designed that will amplify part of the cox1 gene of any Perna species, and possibly other molluscs, as a positive control to demonstrate that the PCR is working.