3 resultados para molecular marker-assisted selection
em eResearch Archive - Queensland Department of Agriculture
Resumo:
The development of molecular markers for genomic studies in Mangifera indica (mango) will allow marker-assisted selection and identification of genetically diverse germplasm, greatly aiding mango breeding programs. We report here our identification of thousands of unambiguous molecular markers that can be easily assayed across genotypes of the species. With origin centered in Southeast Asia, mangos are grown throughout the tropics and subtropics as a nutritious fruit that exhibits remarkable intraspecific phenotypic diversity. With the goal of building a high density genetic map, we have undertaken discovery of sequence variation in expressed genes across a broad range of mango cultivars. A transcriptome sequence reference was built de novo from extensive sequencing and assembly of RNA from cultivar 'Tommy Atkins'. Single nucleotide polymorphisms (SNPs) in protein coding transcripts were determined from alignment of RNA reads from 24 mango cultivars of diverse origins: 'Amin Abrahimpur' (India), 'Aroemanis' (Indonesia), 'Burma' (Burma), 'CAC' (Hawaii), 'Duncan' (Florida), 'Edward' (Florida), 'Everbearing' (Florida), 'Gary' (Florida), 'Hodson' (Florida), 'Itamaraca' (Brazil), 'Jakarata' (Florida), 'Long' (Jamaica), 'M. Casturi Purple' (Borneo), 'Malindi' (Kenya), 'Mulgoba' (India), 'Neelum' (India), 'Peach' (unknown), 'Prieto' (Cuba), 'Sandersha' (India), 'Tete Nene' (Puerto Rico), 'Thai Everbearing' (Thailand), 'Toledo' (Cuba), 'Tommy Atkins' (Florida) and 'Turpentine' (West Indies). SNPs in a selected subset of protein coding transcripts are currently being converted into Fluidigm assays for genotyping of mapping populations and germplasm collections. Using an alternate approach, SNPs (144) discovered by sequencing of candidate genes in 'Kensington Pride' have already been converted and used for genotyping.
Resumo:
QTL identified for seedling and adult plant crown rot resistance in four partially resistant hexaploid wheat sources. PCR-based markers identified for use in marker-assisted selection. Crown rot, caused by Fusarium pseudograminearum, is an important disease of wheat in many wheat-growing regions globally. Complete resistance to infection by F. pseudograminearum has not been observed in a wheat host, but germplasm with partial resistance to this pathogen has been identified. The partially resistant wheat hexaploid germplasm sources 2-49, Sunco, IRN497 and CPI133817 were investigated in both seedling and adult plant field trials to identify markers associated with the resistance which could be used in marker-assisted selection programs. Thirteen different quantitative trait loci (QTL) conditioning crown rot resistance were identified in the four different sources. Some QTL were only observed in seedling trials whereas others appeared to be adult plant specific. For example while the QTL on chromosomes 1AS, 1BS, and 4BS contributed by 2-49 and on 2BS contributed by Sunco were detected in both seedling and field trials, the QTL on 1DL present in 2-49 and the QTL on 3BL in IRN497 were only detected in seedling trials. Genetic correlations between field trials of the same population were strong, as were correlations between seedling trials of the same population. Low to moderate correlations were observed between seedling and field trials. Flanking markers, most of which are less than 10 cM apart, have now been identified for each of the regions associated with crown rot resistance.
Resumo:
The genetic variability of 28 sorghum genotypes of known senescence phenotype was investigated using 66 SSR markers well-distributed across the sorghum genome. The genotypes of a number of lines from breeding programmes for stay-green were also determined. This included lines selected phenotypically for stay-green and also RSG 03123, a marker-assisted backcross progeny of R16 (recurrent parent) and B35 (stay-green donor). A total of 419 alleles were detected with a mean of 6.2 per locus. The number of alleles ranged from one for Xtxp94 to 14 for Xtxp88. Chromosome SBI-10 had the highest mean number of alleles (8.33), while SBI-05 had the lowest (4.17). The PIC values obtained ranged from zero to 0.89 in Xtxp94 and Xtxp88, respectively, with a mean of 0.68. On a chromosome basis, mean PIC values were highest in SBI-10 (0.81) and lowest in SBI-05 (0.53). Most of the alleles from B35 in RSG 03123 were found on chromosomes SBI-01, SBI-02 and SBI-03, confirming the successful introgression of quantitative trait loci associated with stay-green from B35 into the senescent background R16. However, the alternative stay-green genetic sources were found to be distinct based on either all the SSRs employed or using only those associated with the stay-green trait in B35. Therefore, the physiological and biochemical basis of each stay-green source should be evaluated in order to enhance the understanding of the functioning of the trait in the various backgrounds. These genetic sources of stay-green could provide a valuable resource for improving this trait in sorghum breeding programmes.