3 resultados para modular flap
em eResearch Archive - Queensland Department of Agriculture
Resumo:
A commercial non-specific gas sensor array system was evaluated in terms of its capability to monitor the odour abatement performance of a biofiltration system developed for treating emissions from a commercial piggery building. The biofiltration system was a modular system comprising an inlet ducting system, humidifier and closed-bed biofilter. It also included a gravimetric moisture monitoring and water application system for precise control of moisture content of an organic woodchip medium. Principal component analysis (PCA) of the sensor array measurements indicated that the biofilter outlet air was significantly different to both inlet air of the system and post-humidifier air. Data pre-processing techniques including normalising and outlier handling were applied to improve the odour discrimination performance of the non-specific gas sensor array. To develop an odour quantification model using the sensor array responses of the non-specific sensor array, PCA regression, artificial neural network (ANN) and partial least squares (PLS) modelling techniques were applied. The correlation coefficient (r(2)) values of the PCA, ANN, and PLS models were 0.44, 0.62 and 0.79, respectively.
Resumo:
Mud crabs (Scylla spp.) are intensively caught throughout South-East Asia and support a very substantial commercial, recreational fishing and aquaculture industry. Identification of individual animals is important to improve understanding and management of this species. However, tagging of crustaceans is difficult as they frequently molt and internal tags can pose a hazard to consumers. In this pilot study we tested a new method combining passive integrated transponder tags and t-bar tags externally. 45 giant mud crabs (Scylla serrata) were captured from the wild and kept in tanks for a maximum of 10 months. We inserted tags into the abdomen of 35 giant mud crabs and tested a modified method where the combined t-bar/PIT-tag was inserted into the muscle tissue of the rear leg between the dorsal carapace plate and the top of the abdominal flap. Tagged crabs with the modified method showed 85% tag retention for molting crabs. We tested the same method in the field where 852 individuals were tagged with combined t-bar/PIT-tags of which 82 were recaptured showing 100% tag retention but without any evidence of molting having occurred. The tested method of combined t-bar/PIT-tags in giant mud crabs can further improve monitoring for wild and aquaculture populations and can be deployed widely with low cost.
Resumo:
Mud crabs (Scylla spp.) are intensively caught throughout South-East Asia and support a very substantial commercial, recreational fishing and aquaculture industry. Identification of individual animals is important to improve understanding and management of this species. However, tagging of crustaceans is difficult as they frequently molt and internal tags can pose a hazard to consumers. In this pilot study we tested a new method combining passive integrated transponder tags and t-bar tags externally. 45 giant mud crabs (Scylla serrata) were captured from the wild and kept in tanks for a maximum of 10 months. We inserted tags into the abdomen of 35 giant mud crabs and tested a modified method where the combined t-bar/PIT-tag was inserted into the muscle tissue of the rear leg between the dorsal carapace plate and the top of the abdominal flap. Tagged crabs with the modified method showed 85% tag retention for molting crabs. We tested the same method in the field where 852 individuals were tagged with combined t-bar/PIT-tags of which 82 were recaptured showing 100% tag retention but without any evidence of molting having occurred. The tested method of combined t-bar/PIT-tags in giant mud crabs can further improve monitoring for wild and aquaculture populations and can be deployed widely with low cost.