8 resultados para limitations of therapy
em eResearch Archive - Queensland Department of Agriculture
Resumo:
The size of the soil microbial biomass carbon (SMBC) has been proposed as a sensitive indicator for measuring the adverse effects of contaminants on the soil microbial community. In this study of Australian agricultural systems, we demonstrated that field variability of SMBC measured using the fumigation-extraction procedure limited its use as a robust ecotoxicological endpoint. The SMBC varied up to 4-fold across control samples collected from a single field site, due to small-scale spatial heterogeneity in the soil physicochemical environment. Power analysis revealed that large numbers of replicates (3-93) were required to identify 20% or 50% decreases in the size of the SMBC of contaminated soil samples relative to their uncontaminated control samples at the 0.05% level of statistical significance. We question the value of the routine measurement of SMBC as an ecotoxicological endpoint at the field scale, and suggest more robust and predictive microbiological indicators.
Resumo:
Nezara viridula (L.) is a cosmopolitan, polyphagous heteropteran that causes economic damage to many crop species. At present, control of N. viridula in Australia and other countries relies heavily upon insecticides, most of which are disruptive to beneficial insects, constituting a constraint on integrated pest management (IPM). Much research has been conducted into non-chemical control methods for N. viridula. This paper reviews the potential for and limitations of sterile insect technique, classical, inundative and conservation biological control, and trap cropping. None of these techniques appear to be adequate for control of N. viridula when used alone but there is scope for these non-chemical approaches to be adopted for use in integrated management of this pest. A proposal is given for one such integrated approach for future development. It includes biopesticides, trap crops and carefully targeted habitat manipulation to enhance arthropod natural enemies as well as area-wide management and grower education.
Resumo:
This paper describes the establishment of provenance seedling seed orchards of three spotted gums and cadaga (all species of Corymbia ex Eucalyptus). It also discusses the limitations of growing the spotted gums as pure species including: lack of mass flowering, susceptibility to a fungal shoot blight and low amenability to vegetative propagation. These limitations, together with observation of putative natural hybrids of the spotted gums with cadaga, and the early promise of manipulated hybrids, led to an intensive breeding and testing program. Many hybrid families have significant advantages in growth and tolerance to disease, insects and frost, and can be vegetatively propagated. They also exhibit broad environmental plasticity, allowing the best varieties to be planted across a wider range of sites than the spotted gums, resulting in more land being suitable for plantation development.
Resumo:
Mastitis is one of the most economically significant diseases for the dairy industry for backyard farmers in developing countries and high producing herds worldwide. Two of the major factors impeding reduction in the incidence of this disease is [a] the lack of availability of an effective vaccine capable of protecting against multiple etiological agents and [b] propensity of some of the etiological agents to develop persistent antibiotic resistance in biofilms. This is further complicated by the continuing revolving shift in the predominant etiological agents of mastitis, depending upon a multitude of factors such as variability in hygienic practices on farms, easy access leading to overuse of appropriate or inappropriate antibiotics at suboptimal concentrations, particularly in developing countries, and lack of compliance with the recommended treatment schedules. Regardless, Staphylococcus aureus and Streptococcus uberis followed by Escherichia coli, Streptococcus agalactiae has become the predominant etiological agents of bovine mastitis followed Streptococcus agalactiae, Streptococcus dysagalactiae, Klebsiella pneumonia and the newly emerging Mycoplasma bovis. Current approaches being pursued to reduce the negative economic impact of this disease are through early diagnosis of infection, immediate treatment with an antibiotic found to either inhibit or kill the pathogen(s) in vitro using planktonic cultures and the use of the currently marketed vaccines regardless of their demonstrated effectiveness. Given the limitations of breeding programs, including genetic selection to improve resistance against infectious diseases including mastitis, it is imperative to have the availability of an effective broad-spectrum, preferably cross-protective, vaccine capable of protecting against bovine mastitis for reduction in the incidence of bovine mastitis, as well as interrupting the potential cross-species transmission to humans. This overview highlights the major etiological agents, factors affecting susceptibility to mastitis, and the current status of antibiotic-based therapies and prototype vaccine candidates or commercially available vaccines against bovine mastitis as potential preventative strategies. © 2013 Tiwari JG, et al.
Resumo:
Globally, wild or feral pigs Sus scrofa are a widespread and important pest. Mitigation of their impacts requires a sound understanding of those impacts and the benefits and limitations of different management approaches. Here, we review published and unpublished studies to provide a synopsis of contemporary understanding of wild pig impacts and management in Australia, and to identify important shortcomings. Wild pigs can have important impacts on biodiversity values, ecosystem functioning and agricultural production. However, many of these impacts remain poorly described, and therefore, difficult to manage effectively. Many impacts are highly variable, and innovative experimental and analytical approaches may be necessary to elucidate them. Most contemporary management programmes use lethal techniques to attempt to reduce pig densities, but it is often unclear how effective they are at reducing damage. We conclude that greater integration of experimental approaches into wild pig management programmes is necessary to improve our understanding of wild pig impacts, and our ability to manage those impacts effectively and efficiently.
Resumo:
In multi-species fisheries managed under ITQs, the existence of joint production may lead to complex catch-quota balancing issues. Previous modelling and experimental research suggest that, in such fisheries, some fishers may benefit from the ability to trade packages of fishing quotas, rather than fulfil their quota needs by simultaneously bidding on separate single-species quota markets. This note presents evidence of naturally occurring package trades in a real fishery. Based on this evidence, we suggest that further empirical and modelling research is required on the potential and limitations of package quota trading in mixed fisheries managed with ITQs. © 2014.
Resumo:
BACKGROUND: In order to rapidly and efficiently screen potential biofuel feedstock candidates for quintessential traits, robust high-throughput analytical techniques must be developed and honed. The traditional methods of measuring lignin syringyl/guaiacyl (S/G) ratio can be laborious, involve hazardous reagents, and/or be destructive. Vibrational spectroscopy can furnish high-throughput instrumentation without the limitations of the traditional techniques. Spectral data from mid-infrared, near-infrared, and Raman spectroscopies was combined with S/G ratios, obtained using pyrolysis molecular beam mass spectrometry, from 245 different eucalypt and Acacia trees across 17 species. Iterations of spectral processing allowed the assembly of robust predictive models using partial least squares (PLS). RESULTS: The PLS models were rigorously evaluated using three different randomly generated calibration and validation sets for each spectral processing approach. Root mean standard errors of prediction for validation sets were lowest for models comprised of Raman (0.13 to 0.16) and mid-infrared (0.13 to 0.15) spectral data, while near-infrared spectroscopy led to more erroneous predictions (0.18 to 0.21). Correlation coefficients (r) for the validation sets followed a similar pattern: Raman (0.89 to 0.91), mid-infrared (0.87 to 0.91), and near-infrared (0.79 to 0.82). These statistics signify that Raman and mid-infrared spectroscopy led to the most accurate predictions of S/G ratio in a diverse consortium of feedstocks. CONCLUSION: Eucalypts present an attractive option for biofuel and biochemical production. Given the assortment of over 900 different species of Eucalyptus and Corymbia, in addition to various species of Acacia, it is necessary to isolate those possessing ideal biofuel traits. This research has demonstrated the validity of vibrational spectroscopy to efficiently partition different potential biofuel feedstocks according to lignin S/G ratio, significantly reducing experiment and analysis time and expense while providing non-destructive, accurate, global, predictive models encompassing a diverse array of feedstocks.
Resumo:
Rice production symbolizes the single largest land use for food production on the Earth. The significance of this cereal as a source of energy and income seems overwhelming for millions of people in Asia, representing 90% of global rice production and consumption. Estimates indicate that the burgeoning population will need 25% more rice by 2025 than today's consumption. As the demand for rice is increasing, its production in Asia is threatened by a dwindling natural resource base, socioeconomic limitations, and uncertainty of climatic optima. Transplanting in puddled soil with continuous flooding is a common method of rice crop establishment in Asia. There is a dire need to look for rice production technologies that not only cope with existing limitations of transplanted rice but also are viable, economical, and secure for future food demand.Direct seeding of rice has evolved as a potential alternative to the current detrimental practice of puddling and nursery transplanting. The associated benefits include higher water productivity, less labor and energy inputs, less methane emissions, elimination of time and edaphic conflicts in the rice-wheat cropping system, and early crop maturity. Realization of the yield potential and sustainability of this resource-conserving rice production technique lies primarily in sustainable weed management, since weeds have been recognized as the single largest biological constraint in direct-seeded rice (DSR). Weed competition can reduce DSR yield by 30-80% and even complete crop failure can occur under specific conditions. Understanding the dynamics and outcomes of weed-crop competition in DSR requires sound knowledge of weed ecology, besides production factors that influence both rice and weeds, as well as their association. Successful adoption of direct seeding at the farmers' level in Asia will largely depend on whether farmers can control weeds and prevent shifts in weed populations from intractable weeds to more difficult-to-control weeds as a consequence of direct seeding. Sustainable weed management in DSR comprises all the factors that give DSR a competitive edge over weeds regarding acquisition and use of growth resources. This warrants the need to integrate various cultural practices with weed control measures in order to broaden the spectrum of activity against weed flora. A weed control program focusing entirely on herbicides is no longer ecologically sound, economically feasible, and effective against diverse weed flora and may result in the evolution of herbicide-resistant weed biotypes. Rotation of herbicides with contrasting modes of action in conjunction with cultural measures such as the use of weed-competitive rice cultivars, sowing time, stale seedbed technique, seeding rate, crop row spacing, fertilizer and water inputs and their application method/timing, and manual and mechanical hoeing can prove more effective and need to be optimized keeping in view the type and intensity of weed infestation. This chapter tries to unravel the dynamics of weed-crop competition in DSR. Technological issues, limitations associated with DSR, and opportunities to combat the weed menace are also discussed as a pragmatic approach for sustainable DSR production. A realistic approach to secure yield targets against weed competition will combine the abovementioned strategies and tactics in a coordinated manner. This chapter further suggests the need of multifaceted and interdisciplinary research into ecologically based weed management, as DSR seems inevitable in the near future.