10 resultados para limit theorem in the supercritical case
em eResearch Archive - Queensland Department of Agriculture
Resumo:
Growers working together have proven to be a successful method for improving the utilization of farm resources and accelerating the adoption of the Sugar Yield Decline Joint Venture principles (SYDJV). The Pinnacle Precision Farming Group was formed in 2004 with the aim to bring together the ideas, knowledge and resources of growers in the Herbert region. Along with their common interest in controlled traffic, minimal tillage and crop rotations, the grower group utilize a farm machinery contractor to provide some of their major farming operations. This paper provides an insight into the changes made by the Pinnacle Precision Farming Group and their journey to adopt the new farming system practices. This paper also details the changes made by the group machinery contractor and a comparison of the old and new farming systems used by a group member. A focus point of the document is the impact of the new farming system on the economic, social and environmental components of the farming business. Analysis of the new farming system with a legume crop rotation revealed an increase in the farm gross margin by AU$22 024 and, in addition, a reduction in tractor operation time by 38% across the whole farm. This represents a return on marginal capital of 14.68 times the original capital outlay required by the group member. Using the new farming system without a legume crop will still improve the group members whole of farm gross margin by AU$6 839 and reduce tractor operation time by 43% across the whole farm. The Pinnacle Precision Farming group recognize the need to continually improve their farming businesses and believe that the new farming system principles are critical for the long term viability of the industry. [U$1 = AU$1.19].
Resumo:
In the wheatbelt of eastern Australia, rainfall shifts from winter dominated in the south (South Australia, Victoria) to summer dominated in the north (northern New South Wales, southern Queensland). The seasonality of rainfall, together with frost risk, drives the choice of cultivar and sowing date, resulting in a flowering time between October in the south and August in the north. In eastern Australia, crops are therefore exposed to contrasting climatic conditions during the critical period around flowering, which may affect yield potential, and the efficiency in the use of water (WUE) and radiation (RUE). In this work we analysed empirical and simulated data, to identify key climatic drivers of potential water- and radiation-use efficiency, derive a simple climatic index of environmental potentiality, and provide an example of how a simple climatic index could be used to quantify the spatial and temporal variability in resource-use efficiency and potential yield in eastern Australia. Around anthesis, from Horsham to Emerald, median vapour pressure deficit (VPD) increased from 0.92 to 1.28 kPa, average temperature increased from 12.9 to 15.2°C, and the fraction of diffuse radiation (FDR) decreased from 0.61 to 0.41. These spatial gradients in climatic drivers accounted for significant gradients in modelled efficiencies: median transpiration WUE (WUEB/T) increased southwards at a rate of 2.6% per degree latitude and median RUE increased southwards at a rate of 1.1% per degree latitude. Modelled and empirical data confirmed previously established relationships between WUEB/T and VPD, and between RUE and photosynthetically active radiation (PAR) and FDR. Our analysis also revealed a non-causal inverse relationship between VPD and radiation-use efficiency, and a previously unnoticed causal positive relationship between FDR and water-use efficiency. Grain yield (range 1-7 t/ha) measured in field experiments across South Australia, New South Wales, and Queensland (n = 55) was unrelated to the photothermal quotient (Pq = PAR/T) around anthesis, but was significantly associated (r2 = 0.41, P < 0.0001) with newly developed climatic index: a normalised photothermal quotient (NPq = Pq . FDR/VPD). This highlights the importance of diffuse radiation and vapour pressure deficit as sources of variation in yield in eastern Australia. Specific experiments designed to uncouple VPD and FDR and more mechanistic crop models might be required to further disentangle the relationships between efficiencies and climate drivers.
Resumo:
A case study was undertaken to determine the economic impact of a change in management class as detailed in the A, B, C and D management class framework. This document focuses on the implications of changing from D to C, C to B and B to A class management in the Burdekin River irrigation area (BRIA) and if the change is worthwhile from an economic perspective. This report provides a guide to the economic impact that may be expected when undertaking a particular change in farming practices and will ultimately lead to more informed decisions being made by key industry stakeholders. It is recognised that these management classes have certain limitations and in many cases the grouping of practices may not be reflective of the real situation. The economic case study is based on the A, B, C and D management class framework for water quality improvement developed in 2007/2008 for the Burdekin natural resource management region. The framework for the Burdekin is currently being updated to clarify some issues and incorporate new knowledge since the earlier version of the framework. However, this updated version is not yet complete and so the Paddock to Reef project has used the most current available version of the framework for the modelling and economics. As part of the project specification, sugarcane crop production data for the BRIA was provided by the APSIM model. The information obtained from the APSIM crop modelling programme included sugarcane yields and legume grain yield (legume grain yield only applies to A class management practice). Because of the complexity involved in the economic calculations, a combination of the FEAT, PiRisk and a custom made spreadsheet was used for the economic analysis. Figures calculated in the FEAT program were transferred to the custom made spreadsheet to develop a discounted cash flow analysis. The marginal cash flow differences for each farming system were simulated over a 5-year and 10-year planning horizon to determine the net present value of changing across different management practices. PiRisk was used to test uncertain parameters in the economic analysis and the potential risk associated with a change in value.
Resumo:
A case study was undertaken to determine the economic impact of a change in management class as detailed in the A, B, C and D management class framework. This document focuses on the implications of changing from D to C, C to B and B to A class management in the Burdekin Delta region and if the change is worthwhile from an economic perspective. This report provides a guide to the economic impact that may be expected when undertaking a particular change in farming practices and will ultimately lead to more informed decisions being made by key industry stakeholders. It is recognised that these management classes have certain limitations and in many cases the grouping of practices may not be reflective of the real situation. The economic case study is based on the A, B, C and D management class framework for water quality improvement developed in 2007/2008 for the Burdekin natural resource management region. The framework for the Burdekin is currently being updated to clarify some issues and incorporate new knowledge since the earlier version of the framework. However, this updated version is not yet complete and so the Paddock to Reef project has used the most current available version of the framework for the modelling and economics. As part of the project specification, sugarcane crop production data for the Burdekin Delta region was provided by the APSIM model. The information obtained from the APSIM crop modelling programme included sugarcane yields and legume grain yield (legume grain yield only applies to A class management practice). Because of the complexity involved in the economic calculations, a combination of the FEAT, PiRisk and a custom made spreadsheet was used for the economic analysis. Figures calculated in the FEAT program were transferred to the custom made spreadsheet to develop a discounted cash flow analysis. The marginal cash flow differences for each farming system were simulated over a 5-year and 10-year planning horizon to determine the Net Present Value of changing across different management practices. PiRisk was used to test uncertain parameters in the economic analysis and the potential risk associated with a change in value.
Resumo:
A case study was undertaken to determine the economic impact of a change in management class as detailed in the A, B, C and D management class framework. This document focuses on the implications of changing from D to C, C to B and B to A class management in the Tully region and if the change is worthwhile from an economic perspective. This report provides a guide to the economic impact that may be expected when undertaking a particular change in farming practices and will ultimately lead to more informed decisions being made by key industry stakeholders. It is recognised that these management classes have certain limitations and in many cases the grouping of practices may not be reflective of the real situation. The economic case study is based on the A, B, C and D management class framework for water quality improvement developed in 2007/2008 by the wet tropics natural resource management region. The framework for wet tropics is currently being updated to clarify some issues and incorporate new knowledge since the earlier version of the framework. However, this updated version is not yet complete and so the Paddock to Reef project has used the most current available version of the framework for the modelling and economics. As part of the project specification, sugarcane crop production data for the Tully region was provided by the APSIM model. Because of the complexity involved in the economic calculations, a combination of the FEAT, PiRisk and a custom made spreadsheet was used for the economic analysis. Figures calculated in the FEAT program were transferred to the custom made spreadsheet to develop a discounted cash flow analysis. The marginal cash flow differences for each farming system were simulated over a 5-year and 10-year planning horizon to determine the Net Present Value of changing across different management practices. PiRisk was used to test uncertain parameters in the economic analysis and the potential risk associated with a change in value.
Resumo:
Converting from an existing irrigation system is often seen as high risk by the land owner. The significant financial investment and the long period over which the investment runs is also complicated by the uncertainty associated with long term input costs (such as energy), crop production, and the continually evolving natural resource management rules and policy. Irrigation plays a pivotal part in the Burdekin sugarcane farming system. At present the use of furrow irrigation is by far the most common form due to the ease of use, relatively low operating cost and well established infrastructure currently in place. The Mulgrave Area Farmer Integrated Action (MAFIA) grower group, located near Clare in the lower Burdekin region, identified the need to learn about sustainable farming systems with a focus on the environment, social and economic implications. In early 2007, Hesp Faming established a site to investigate the use of overhead irrigation as an alternative to furrow irrigation and its integration with new farming system practices, including Green Cane Trash Blanketing (GCTB). Although significant environmental and social benefits exist, the preliminary investment analysis indicates that the Overhead Low Pressure (OHLP) irrigation system is not adding financial value to the Hesp Farming business. A combination of high capital costs and other offsetting factors resulted in the benefits not being fully realised. A different outcome is achieved if Hesp Farming is able to realise value on the water saved, with both OHLP irrigation systems displaying a positive NPV. This case study provides a framework to further investigate the economics of OHLP irrigation in sugarcane and it is anticipated that with additional data a more definitive outcome will be developed in the future.
Resumo:
Controlled traffic has been identified as the most practical method of reducing compaction-related soil structural degradation in the Australian sugarcane industry. GPS auto-steer systems are required to maximize this potential. Unfortunately there is a perception that little economic gain will result from investing in this technology. Regardless, a number of growers have made the investment and are reaping substantial economic and lifestyle rewards. In this paper we assess the cost effectiveness of installing GPS guidance and using it to implement Precision Controlled Traffic Farming (PCTF) based on the experience of an early adopter. The Farm Economic Analysis Tool (FEAT) model was used with data provided by the grower to demonstrate the benefits of implementing PCTF. The results clearly show that a farming system based on PCTF and the minimum tillage improved farm gross margin by 11.8% and reduced fuel usage by 58%, compared to producers' traditional practice. PCTF and minimum tillage provide sugar producers with a tool to manage the price cost squeeze at a time of low sugar prices. These data provide producers with the evidence that investment in PCTF is economically prudent.
Resumo:
Two trials were done in this project. One was a continuation of work started under a previous GRDC/SRDC-funded activity, 'Strategies to improve the integration of legumes into cane based farming systems'. This trial aimed to assess the impact of trash and tillage management options and nematicide application on nematodes and crop performance. Methods and results are contained in the following publication: Halpin NV, Stirling GR, Rehbein WE, Quinn B, Jakins A, Ginns SP. The impact of trash and tillage management options and nematicide application on crop performance and plant-parasitic nematode populations in a sugarcane/peanut farming system. Proc. Aust. Soc. Sugar Cane Technol. 37, 192-203. Nematicide application in the plant crop significantly reduced total numbers of plant parasitic nematodes (PPN) but there was no impact on yield. Application of nematicide to the ratoon crop significantly reduced sugar yield. The study confirmed other work demonstrating that implementation of strategies like reduced tillage reduced populations of total PPN, suggesting that the soil was more suppressive to PPN in those treatments. The second trial, a variety trial, demonstrated the limited value of nematicide application in sugarcane farming systems. This study has highlighted that growers shouldn’t view nematicides as a ‘cure all’ for paddocks that have historically had high PPN numbers. Nematicides have high mammalian toxicity, have the potential to contaminate ground water (Kookana et al. 1995) and are costly. The cost of nematicide used in R1 was approx. $320 - $350/ha, adding $3.50/t of cane in a 100 t/ha crop. Also, our study demonstrated that a single nematicide treatment at the application rate registered for sugarcane is not very effective in reducing populations of nematode pests. There appears to be some levels of resistance to nematodes within the current suite of varieties available to the southern canelands. For example the soil in plots that were growing Q183 had 560% more root knot nematodes / 200mL soil compared to plots that grew Q245. The authors see great value in investment into a nematode screening program that could rate varieties into groups of susceptibility to both major sugarcane nematode pests. Such a rating could then be built into a decision support ‘tree’ or tool to better enable producers to select varieties on a paddock by paddock basis.