2 resultados para ketones
em eResearch Archive - Queensland Department of Agriculture
Resumo:
Analysis of headspace volatiles by gas chromatography/mass spectrometry from king (Penaeus plebejus), banana (P. merguiensis), tiger (P. esculentus/semisulcatus) and greasy (Metapenaeus bennettae) prawns stored in ice or ice slurry, which is effectively an environment of low oxygen tension, indicated the presence of amines at the early stages of storage (less than 8 days) irrespective of the nature of the storage media. Esters were more prevalent in prawns stored on ice (normal oxygen conditions) at the latter stages of storage (more than 8 days) and were only produced by Pseudomonas fragi, whereas sulphides and amines occurred whether the predominant spoilage organism was Ps.fragi or Shewanella putrefaciens. The free amino acid profiles of banana and king prawns were high in arginine (12–14%) and low in cysteine (0.1–0.17%) and methionine (0.1–0.2%). Filter sterilised raw banana prawn broth inoculated with a total of 15 cultures of Ps. fragi and S. putrefaciens and incubated for two weeks at 5°C, showed the presence of 17 major compounds in the headspace volatiles analysed using gas chromatography/mass spectrometry (GC/MS). These were mainly amines, sulphides, ketones and esters. Principal Component Analysis of the results for the comparative levels of the volatiles produced by pure cultures, inoculated into sterile prawn broth, indicated three subgroupings of the organisms; I, Ps. fragi from a particular geographic location; II, S. putrefaciens from another geographic location; and III, a mixture of Ps. fragi and S. putrefaciens from different geographic locations. The sensory impression created by the cultures was strongly related to the chemical profile as determined by GC/MS. Organisms, even within the same subgrouping classified as identical by the usual tests, produced a different range of volatiles in the same uniform substrate.
Resumo:
The volatile components of the mandibular gland secretion generated by the Giant Ichneumon parasitoid wasp Megarhyssa nortoni nortoni Cresson are mainly spiroacetals and methyl ketones, and all have an odd number of carbon atoms. A biosynthetic scheme rationalizing the formation of these diverse components is presented. This scheme is based on the results of incorporation studies using 2H-labeled precursors and [18O]dioxygen. The key steps are postulated to be decarboxylation of β-ketoacid equivalents, β-oxidation (chain shortening), and monooxygenase-mediated hydroxylation leading to a putative ketodiol that cyclizes to spiroacetals. The generality of the role of monooxygenases in spiroacetal formation in insects is considered, and overall, a cohesive, internally consistent theory of spiroacetal generation by insects is presented, against which future hypotheses will have to be compared.