19 resultados para irrigation by flooding

em eResearch Archive - Queensland Department of Agriculture


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Options for the integrated management of white blister (caused by Albugo candida) of Brassica crops include the use of well timed overhead irrigation, resistant cultivars, programs of weekly fungicide sprays or strategic fungicide applications based on the disease risk prediction model, Brassica(spot)(TM). Initial systematic surveys of radish producers near Melbourne, Victoria, indicated that crops irrigated overhead in the morning (0800-1200 h) had a lower incidence of white blister than those irrigated overhead in the evening (2000-2400 h). A field trial was conducted from July to November 2008 on a broccoli crop located west of Melbourne to determine the efficacy and economics of different practices used for white blister control, modifying irrigation timing, growing a resistant cultivar and timing spray applications based on Brassica(spot)(TM). Growing the resistant cultivar, 'Tyson', instead of the susceptible cultivar, 'Ironman', reduced disease incidence on broccoli heads by 99 %. Overhead irrigation at 0400 h instead of 2000 h reduced disease incidence by 58 %. A weekly spray program or a spray regime based on either of two versions of the Brassica(spot)(TM) model provided similar disease control and reduced disease incidence by 72 to 83 %. However, use of the Brassica(spot)(TM) models greatly reduced the number of sprays required for control from 14 to one or two. An economic analysis showed that growing the more resistant cultivar increased farm profit per ha by 12 %, choosing morning irrigation by 3 % and using the disease risk predictive models compared with weekly sprays by 15 %. The disease risk predictive models were 4 % more profitable than the unsprayed control.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Quantifying the local crop response to irrigation is important for establishing adequate irrigation management strategies. This study evaluated the effect of irrigation applied with subsurface drip irrigation on field corn (Zea mays L.) evapotranspiration (ETc), yield, water use efficiencies (WUE = yield/ETc, and IWUE = yield/irrigation), and dry matter production in the semiarid climate of west central Nebraska. Eight treatments were imposed with irrigation amounts ranging from 53 to 356 mm in 2005 and from 22 to 226 mm in 2006. A soil water balance approach (based on FAO-56) was used to estimate daily soil water and ETc. Treatments resulted in seasonal ETc of 580-663 mm and 466-656 mm in 2005 and 2006, respectively. Yields among treatments differed by as much as 22% in 2005 and 52% in 2006. In both seasons, irrigation significantly affected yields, which increased with irrigation up to a point where irrigation became excessive. Distinct relationships were obtained each season. Yields increased linearly with seasonal ETc (R 2 = 0.89) and ETc/ETp (R 2 = 0.87) (ETp = ETc with no water stress). The yield response factor (ky), which indicates the relative reduction in yield to relative reduction in ETc, averaged 1.58 over the two seasons. WUE increased non-linearly with seasonal ETc and with yield. WUE was more sensitive to irrigation during the drier 2006 season, compared with 2005. Both seasons, IWUE decreased sharply with irrigation. Irrigation significantly affected dry matter production and partitioning into the different plant components (grain, cob, and stover). On average, the grain accounted for the majority of the above-ground plant dry mass (≈59%), followed by the stover (≈33%) and the cob (≈8%). The dry mass of the plant and that of each plant component tended to increase with seasonal ETc. The good relationships obtained in the study between crop performance indicators and seasonal ETc demonstrate that accurate estimates of ETc on a daily and seasonal basis can be valuable for making tactical in-season irrigation management decisions and for strategic irrigation planning and management.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dwindling water supplies for irrigation are prompting alternative management choices by irrigators. Limited irrigation, where less water is applied than full crop demand, may be a viable approach. Application of limited irrigation to corn was examined in this research. Corn was grown in crop rotations with dryland, limited irrigation, or full irrigation management from 1985 to 1999. Crop rotations included corn following corn (continuous corn), corn following wheat, followed by soybean (wheat-corn-soybean), and corn following soybean (corn-soybean). Full irrigation was managed to meet crop evapotranspiration requirements (ETc). Limited irrigation was managed with a seasonal target of no more than 150 mm applied. Precipitation patterns influenced the outcomes of measured parameters. Dryland yields had the most variation, while fully irrigated yields varied the least. Limited irrigation yields were 80% to 90%> of fully irrigated yields, but the limited irrigation plots received about half the applied water. Grain yields were significantly different among irrigation treatments. Yields were not significantly different among rotation treatments for all years and water treatments. For soil water parameters, more statistical differences were detected among the water management treatments than among the crop rotation treatments. Economic projections of these management practices showed that full irrigation produced the most income if water was available. Limited irrigation increased income significantly from dryland management.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Water regulations have decreased irrigation water supplies in Nebraska and some other areas of the USA Great Plains. When available water is not enough to meet crop water requirements during the entire growing cycle, it becomes critical to know the proper irrigation timing that would maximize yields and profits. This study evaluated the effect of timing of a deficit-irrigation allocation (150 mm) on crop evapotranspiration (ETc), yield, water use efficiency (WUE = yield/ETc), irrigation water use efficiency (IWUE = yield/irrigation), and dry mass (DM) of corn (Zea mays L.) irrigated with subsurface drip irrigation in the semiarid climate of North Platte, NE. During 2005 and 2006, a total of sixteen irrigation treatments (eight each year) were evaluated, which received different percentages of the water allocation during July, August, and September. During both years, all treatments resulted in no crop stress during the vegetative period and stress during the reproductive stages, which affected ETc, DM, yield, WUE and IWUE. Among treatments, ETc varied by 7.2 and 18.8%; yield by 17 and 33%; WUE by 12 and 22%, and IWUE by 18 and 33% in 2005 and 2006, respectively. Yield and WUE both increased linearly with ETc and with ETc/ETp (ETp = seasonal ETc with no water stress), and WUE increased linearly with yield. The yield response factor (ky) averaged 1.50 over the two seasons. Irrigation timing affected the DM of the plant, grain, and cob, but not that of the stover. It also affected the percent of DM partitioned to the grain (harvest index), which increased linearly with ETc and averaged 56.2% over the two seasons, but did not affect the percent allocated to the cob or stover. Irrigation applied in July had the highest positive coefficient of determination (R2) with yield. This high positive correlation decreased considerably for irrigation applied in August, and became negative for irrigation applied in September. The best positive correlation between the soil water deficit factor (Ks) and yield occurred during weeks 12-14 from crop emergence, during the "milk" and "dough" growth stages. Yield was poorly correlated to stress during weeks 15 and 16, and the correlation became negative after week 17. Dividing the 150 mm allocation about evenly among July, August and September was a good strategy resulting in the highest yields in 2005, but not in 2006. Applying a larger proportion of the allocation in July was a good strategy during both years, and the opposite resulted when applying a large proportion of the allocation in September. The different results obtained between years indicate that flexible irrigation scheduling techniques should be adopted, rather than relying on fixed timing strategies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the 1970s, acid sulfate soils (ASS) distributed within about 720 ha of predominantly mangrove and salt pan wetlands at East Trinity in north Queensland were developed after the area was isolated from tidal flooding by a surrounding seawall and the installation of tidal gates on major drainage creeks. Following drainage and oxidation of these estuarine acidic sediments, resultant acid leachate caused considerable, ongoing environmental problems including regular fish kills. A rehabilitation program covering much of these former tidal wetlands commenced in 2000 using a lime-assisted tidal exchange management regime. Changes in the established populations of estuarine fish and crustaceans were monitored in the two creeks (Firewood and Hills Creeks) where tidal flows were reinstated. In Firewood Creek between 2001 and 2005, there was a progressive increase in fish species richness, diversity and abundance. The penaeid prawn Fenneropenaeus merguiensis was a major component of the cast net catches in the lower sections of both Firewood and Hills Creeks but its relative abundance decreased upstream of the tidal gates on the seawall. Well established stocks of predominantly juvenile, male Scylla serrata resident upstream of the tidal gates indicated suitable habitats with acceptable water and sediment quality and adequate availability of food. The regular fish kills that occurred prior to the management regime abated and, overall, the implementation of the rehabilitation program is yielding positive benefits for the local fisheries.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This report summarises work conducted by the QDPI, in partnership with the South Burdekin Water Board (SBWB) and the Burdekin Shire Council (BSC) between 2001 and 2003. The broad aim of the research was to assess the potential of native fish as biocontrol agents for noxious weeds, as part of an integrated program for managing water quality in the Burdekin Irrigation Area. A series of trials were conducted at, or using water derived from, the Sandy Creek Diversion near Groper Creek (lower Burdekin delta). Trials demonstrated that aquatic weeds play a positive role in trapping transient nutrients, until such time that weed growth becomes self-shading and weed dieback occurs, which releases stored nutrients and adversely affects water quality. Transient nutrient levels (av. TN<0.5mg/L; av. TP<0.1mg/L) found in the irrigation channel during the course of this research were substantially lower than expected, especially considering the intensive agriculture and sewage effluent discharge upstream from the study site. This confirms the need to consider the control of weeds rather than complete weed extermination when formulating management plans. However, even when low nutrient levels are available, there is competitive exploitation of habitat variables in the irrigation area leading to succession and eventual domination by certain weed species. During these trials, we have seen filamentous algae, phytoplankton, hyacinth and curled pondweed each hold competitive advantage at certain points. However without intervention, floating weeds, especially hyacinth, ultimately predominate in the Burdekin delta due to their fast propagation rate and their ability to out-shade submerged plants. We have highlighted the complexity of interactions in these highly disturbed ecosystems in that even if the more prevalent noxious weeds are contained, other weed species will exploit the vacant niche. This complexity places stringent requirements on the type of native fish that can be used as biocontrol agents. Of the seven fish species identified with herbivorous trophic niches, most target plankton or algae and do not have the physical capacity to directly eat the larger macrophytes of the delta. We do find however that following mechanical weed harvesting, inoculative releases of fish can slow the rate of hyacinth recolonisation. This occurs by mechanisms in addition to direct weed consumption, such as disturbing growth surfaces by grazing on attached biofilms. Predation by birds and water rats presents another impediment to the efficacy of large-scale releases of fish. However, alternative uses of fish in water quality management in the Burdekin irrigation area are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Despite recent flooding in eastern Australia, the availability/quality of irrigation water is a long-term issue for Australian vegetable growers. To survive, producers are told to implement new technologies. However, there is often little practical information investigating which improvements could make a real difference, and keep production profitable. In an Horticulture Australia Ltd three year project, scientists from the Department of Employment, Economic Development and Innovation (QLD), CSIRO, Department of Industry and Investment (NSW), and the National Centre for Engineering in Agriculture, evaluated practical irrigation improvements. We conducted experiments and case studies on farms in southern Queensland and Riverina vegetable districts, with over 100 extension events, including irrigation workshops, conferences, and field days.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Service provision project to be undertaken by staff from the Department of Employment, Economic Development and Innovation (DEEDI) to the Flower Association of Queensland Inc. (FAQI) to fulfil FAQI's requirements under the South East Queensland - Irrigation Futures project.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Development of irrigation sceduling application for Smartphone use by irrigators and consultants.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Research on the physiological response of crop plants to drying soils and subsequent water stress has grouped plant behaviours as isohydric and anisohydric. Drying soil conditions, and hence declining soil and root water potentials, cause chemical signals—the most studied being abscisic acid (ABA)—and hydraulic signals to be transmitted to the leaf via xylem pathways. Researchers have attempted to allocate crops as isohydric or anisohydric. However, different cultivars within crops, and even the same cultivars grown in different environments/climates, can exhibit both response types. Nevertheless, understanding which behaviours predominate in which crops and circumstances may be beneficial. This paper describes different physiological water stress responses, attempts to classify vegetable crops according to reported water stress responses, and also discusses implications for irrigation decision-making.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Direct measurement of plant water status for irrigation scheduling may be more sensitive, and promote better horticultural crop quality, than indirect methods such as soil moisture monitoring. In our research project, we sought to identify instances where direct methods of plant-water status previously used in horticultural crops in Australia. We present the outcomes, suitability or obstacles for adoption by horticultural producers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A case study was undertaken to determine the economic impact of a change in management class as detailed in the A, B, C and D management class framework. This document focuses on the implications of changing from D to C, C to B and B to A class management in the Burdekin River irrigation area (BRIA) and if the change is worthwhile from an economic perspective. This report provides a guide to the economic impact that may be expected when undertaking a particular change in farming practices and will ultimately lead to more informed decisions being made by key industry stakeholders. It is recognised that these management classes have certain limitations and in many cases the grouping of practices may not be reflective of the real situation. The economic case study is based on the A, B, C and D management class framework for water quality improvement developed in 2007/2008 for the Burdekin natural resource management region. The framework for the Burdekin is currently being updated to clarify some issues and incorporate new knowledge since the earlier version of the framework. However, this updated version is not yet complete and so the Paddock to Reef project has used the most current available version of the framework for the modelling and economics. As part of the project specification, sugarcane crop production data for the BRIA was provided by the APSIM model. The information obtained from the APSIM crop modelling programme included sugarcane yields and legume grain yield (legume grain yield only applies to A class management practice). Because of the complexity involved in the economic calculations, a combination of the FEAT, PiRisk and a custom made spreadsheet was used for the economic analysis. Figures calculated in the FEAT program were transferred to the custom made spreadsheet to develop a discounted cash flow analysis. The marginal cash flow differences for each farming system were simulated over a 5-year and 10-year planning horizon to determine the net present value of changing across different management practices. PiRisk was used to test uncertain parameters in the economic analysis and the potential risk associated with a change in value.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The economic analysis is based on the A, B, C and D management practice framework for water quality improvement developed in 2007/2008 by the respective natural resource management region. This document focuses on the economic implications of these management practices in the Burdekin River Irrigation Area (BRIA). A review of the management practices is currently being undertaken to clarify some issues and incorporate new knowledge since the earlier version of the framework. However, this updated version is not yet complete and so the Paddock to Reef project has used the most current available version of the framework for the modelling and economics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Converting from an existing irrigation system is often seen as high risk by the land owner. The significant financial investment and the long period over which the investment runs is also complicated by the uncertainty associated with long term input costs (such as energy), crop production, and the continually evolving natural resource management rules and policy. Irrigation plays a pivotal part in the Burdekin sugarcane farming system. At present the use of furrow irrigation is by far the most common form due to the ease of use, relatively low operating cost and well established infrastructure currently in place. The Mulgrave Area Farmer Integrated Action (MAFIA) grower group, located near Clare in the lower Burdekin region, identified the need to learn about sustainable farming systems with a focus on the environment, social and economic implications. In early 2007, Hesp Faming established a site to investigate the use of overhead irrigation as an alternative to furrow irrigation and its integration with new farming system practices, including Green Cane Trash Blanketing (GCTB). Although significant environmental and social benefits exist, the preliminary investment analysis indicates that the Overhead Low Pressure (OHLP) irrigation system is not adding financial value to the Hesp Farming business. A combination of high capital costs and other offsetting factors resulted in the benefits not being fully realised. A different outcome is achieved if Hesp Farming is able to realise value on the water saved, with both OHLP irrigation systems displaying a positive NPV. This case study provides a framework to further investigate the economics of OHLP irrigation in sugarcane and it is anticipated that with additional data a more definitive outcome will be developed in the future.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The availability and quality of irrigation water has become an issue limiting productivity in many Australian vegetable regions. Production is also under competitive pressure from supply chain forces. Producers look to new technologies, including changing irrigation infrastructure, exploring new water sources, and more complex irrigation management, to survive these stresses. Often there is little objective information investigating which improvements could improve outcomes for vegetable producers, and external communities (e.g. meeting NRM targets). This has led to investment in inappropriate technologies, and costly repetition of errors, as business independently discover the worth of technologies by personal experience. In our project, we investigated technology improvements for vegetable irrigation. Through engagement with industry and other researchers, we identified technologies most applicable to growers, particularly those that addressed priority issues. We developed analytical tools for ‘what if’ scenario testing of technologies. We conducted nine detailed experiments in the Lockyer Valley and Riverina vegetable growing districts, as well as case studies on grower properties in southern Queensland. We investigated root zone monitoring tools (FullStop™ wetting front detectors and Soil Solution Extraction Tubes - SSET), drip system layout, fertigation equipment, and altering planting arrangements. Our project team developed and validated models for broccoli, sweet corn, green beans and lettuce, and spreadsheets for evaluating economic risks associated with new technologies. We presented project outcomes at over 100 extension events, including irrigation showcases, conferences, field days, farm walks and workshops. The FullStops™ were excellent for monitoring root zone conditions (EC, nitrate levels), and managing irrigation with poor quality water. They were easier to interpret than the SSET. The SSET were simpler to install, but required wet soil to be reliable. SSET were an option for monitoring deeper soil zones, unsuitable for FullStop™ installations. Because these root zone tools require expertise, and are labour intensive, we recommend they be used to address specific problems, or as a periodic auditing strategy, not for routine monitoring. In our research, we routinely found high residual N in horticultural soils, with subsequently little crop yield response to additional nitrogen fertiliser. With improved irrigation efficiency (and less leaching), it may be timely to re-examine nitrogen budgets and recommendations for vegetable crops. Where the drip irrigation tube was located close to the crop row (i.e. within 5-8 cm), management of irrigation was easier. It improved nitrogen uptake, water use efficiency, and reduced the risk of poor crop performance through moisture stress, particularly in the early crop establishment phases. Close proximity of the drip tube to the crop row gives the producer more options for managing salty water, and more flexibility in taking risks with forecast rain. In many vegetable crops, proximate drip systems may not be cost-effective. The next best alternative is to push crop rows closer to the drip tube (leading to an asymmetric row structure). The vegetable crop models are good at predicting crop phenology (development stages, time to harvest), input use (water, fertiliser), environmental impacts (nutrient, salt movement) and total yields. The two immediate applications for the models are understanding/predicting/manipulating harvest dates and nitrogen movements in vegetable cropping systems. From the economic tools, the major influences on accumulated profit are price and yield. In doing ‘what if’ analyses, it is very important to be as accurate as possible in ascertaining what the assumed yield and price ranges are. In most vegetable production systems, lowering the required inputs (e.g. irrigation requirement, fertiliser requirement) is unlikely to have a major influence on accumulated profit. However, if a resource is constraining (e.g. available irrigation water), it is usually most profitable to maximise return per unit of that resource.