2 resultados para intentional doping

em eResearch Archive - Queensland Department of Agriculture


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Oreochromis mossambicus (Peters 1852) are native to the eastward flowing rivers of central and southern Africa but from the early 1930s they have been widely distributed around the world for aquaculture and for biological control of weeds and insects. While O. mossambicus are now not commonly used as an aquaculture species, the biological traits that made them a popular culture species including tolerance to wide ranging ecological conditions, generalist dietary requirements and rapid reproduction with maternal care have also made them a 'model' invader. Self-sustaining populations now exist in almost every region to which they have been imported. In Australia, since their introduction in the 1970s, O. mossambicus have become established in catchments along the east and west coasts and have the potential to colonise other adjacent drainages. It is thought that intentional translocations are likely to be the most significant factor in their spread in Australia. The ecological and physical tolerances and preferences, reproductive behaviour, hybridization and the high degree of plasticity in the life history traits of O. mossambicus are reviewed. Impacts of O. mossambicus on natural ecosystems including competitive displacement of native species, habitat alteration, predation and as a vector in the spread of diseases are discussed. Potential methods for eradicating or controlling invasive populations of O. mossambicus including physical removal, piscicides, screens, environmental management and genetic technologies are outlined.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An important focus of biosecurity is anticipating future risks, but time lags between introduction, naturalisation, and (ultimately) impact mean that future risks can be strongly influenced by history. We conduct a comprehensive historical analysis of tropical grasses (n = 155) that have naturalised in Australia since European settlement (1788) to determine what factors shaped historical patterns of naturalisation and future risks, including for the 21 species that cause serious negative impacts. Most naturalised species were from the Old World (78 %), were introduced for use in pasture (64.5 %), were first recorded prior to 1940 (84.5 %) and naturalised before 1980 (90.3 %). Patterns for high-impact species were similar, with all being first recorded in Australia by 1940, and only seven naturalised since then-five intentionally introduced as pasture species. Counter to expectations, we found no evidence for increased naturalisation with increasing trade, including for species introduced unintentionally for which the link was expected to be strongest. New pathways have not emerged since the 1930s despite substantial shifts in trading patterns. Furthermore, introduction and naturalisation rates are now at or approaching historically low levels. Three reasons were identified: (1) the often long lag phase between introduction and reported naturalisation means naturalisation rates reflect historical trends in introduction rates; (2) important introduction pathways are not directly related to trade volume and globalisation; and (3) that species pools may become depleted. The last of these appears to be the case for the most important pathway for tropical grasses, i.e. the intentional introduction of useful pasture species. Assuming that new pathways don't arise that might result in increased naturalisation rates, and that current at-border biosecurity practices remain in place, we conclude that most future high-impact tropical grass species are already present in Australia. Our results highlight the need to continually test underlying assumptions regarding future naturalisation rates of high-impact invasive species, as conclusions have important implications for how best to manage future biosecurity risks.