78 resultados para incidental catch
em eResearch Archive - Queensland Department of Agriculture
Resumo:
Concern over the amount of by-catch from benthic trawl fisheries and research into the problem have increased in recent years. The present paper demonstrated that by-catch rates in the Queensland (Australia) saucer scallop (Amusium balloti) trawl fishery can be reduced by 77% (by weight) using nets fitted with a turtle excluder device (TED) and a square-mesh codend, compared with a standard diamond-mesh codend with no TED. This large reduction was achieved with no significant effect on the legal size scallop catch rate and 39% fewer undersize scallops were caught. In total, 382 taxa were recorded in the by-catch, which was dominated by sponges, portunid crabs, small demersal and benthic fish (e.g. leatherjackets, stingerfish, bearded ghouls, nemipterids, longspine emperors, lizard fish, triggerfish, flounders and rabbitfish), elasmobranchs (e.g. mainly rays) and invertebrates (e.g. sea stars, sea urchins, sea cucumbers and bivalve molluscs). Extremely high reductions in catch rate (i.e. ≥85%) were demonstrated for several by-catch species owing to the square-mesh codend. Square-mesh codends show potential as a means of greatly reducing by-catch and lowering the incidental capture and mortality of undersize scallops and Moreton Bay bugs (Thenus australiensis) in this fishery
Resumo:
This study presents results from an experimental 10-day research charter that was designed to quantify the effects of a) a turtle excluder device (TED) and b) a radial escape section bycatch reduction device (BRD) and c) both devices together, on prawn and bycatch catch rates in the Queensland shallow water eastern king prawn (Penaeus plebejus) trawl fishery. The bycatch was comprised of 250 taxa, mainly gurnards, whiting, lizard fish, flathead, dragonets, portunid crabs, turretfish and flounders. The observed mean catch rates of bycatch and marketable eastern king prawns from the standard trawl net (i.e., net with no TED or BRD) used during the charter were 11.06 (se 0.90) kg per hectare swept by the trawl gear (ha-1) and 0.94 kg ha-1, respectively. For the range of depths sampled (20.1-90.7 m), bycatch catch rates declined significantly at a rate of 0.14 kg ha-1 for every 1 m increase in depth, while prawn catch rates were unaffected. When both the TED and radial escape section BRD were used together they resulted in a 24% reduction in total bycatch catch rate compared to a standard net, but at a 20% reduction in marketable prawn catch rate. The largest reductions were achieved for stout whiting Sillago robusta (57% reduction) and yellowtail scad Trachurus novaezelandiae (32% reduction). Multidimensional scaling and analysis of similarities revealed that bycatch assemblages differed significantly between depths and latitude, but not between the different combinations of bycatch reduction devices. Despite the lowered prawn catch rates, the reduced bycatch catch rates are promising, particularly for S. robusta which is not permitted to be retained by the prawn trawl fleet and yet experiences considerable incidental fishing mortality, and because it is targeted in a separate licensed commercial fishery.
Resumo:
The Australian endemic skate Dipturus polyommata collected from by-catch of a benthic prawn fishery off southern Queensland was examined to provide information on reproduction and diet. Morphological relationships of total length (LT) to disc width and LT to mass were estimated. Size at birth was estimated at c. 100-110 mm and size at first feeding at c. 105-110 mm LT. Size at 50% maturity (LT50 and 95% CI) was 321 (305-332) and 300 (285-306) mm LT for females and males, respectively. Size at first maturity corresponded to 87.7% of observed maximum size in females (366 mm LT) and 87.5% in males (343 mm L T). Two females, representing 18.2% of mature females sampled in the austral winter were each carrying two egg cases. Descriptions of egg cases are given. Diet described by the index of relative importance as a percentage (%IRI) was predominantly crustacean based with carid shrimps (53.64%) and penaeoid prawns (23.30%) the most significant prey groups. Teleosts (11.72%), gammarid amphipods (5.31%) and mysids (4.72%) were also important to the diet of the species, while a further six prey groups made only a minor contribution to diet (1.31%). An ontogenetic change was evident between the diets of immature and mature skates. Immature animals fed more extensively on carids and amphipods and mature animals on penaeoids, teleosts and mysids.
Resumo:
The Queensland Great Barrier Reef line fishery in Australia is regulated via a range of input and output controls including minimum size limits, daily catch limits and commercial catch quotas. As a result of these measures a substantial proportion of the catch is released or discarded. The fate of these released fish is uncertain, but hook-related mortality can potentially be decreased by using hooks that reduce the rates of injury, bleeding and deep hooking. There is also the potential to reduce the capture of non-target species though gear selectivity. A total of 1053 individual fish representing five target species and three non-target species were caught using six hook types including three hook patterns (non-offset circle, J and offset circle), each in two sizes (small 4/0 or 5/0 and large 8/0). Catch rates for each of the hook patterns and sizes varied between species with no consistent results for target or non-target species. When data for all of the fish species were aggregated there was a trend for larger hooks, J hooks and offset circle hooks to cause a greater number of injuries. Using larger hooks was more likely to result in bleeding, although this trend was not statistically significant. Larger hooks were also more likely to foul-hook fish or hook fish in the eye. There was a reduction in the rates of injuries and bleeding for both target and non-target species when using the smaller hook sizes. For a number of species included in our study the incidence of deep hooking decreased when using non-offset circle hooks, however, these results were not consistent for all species. Our results highlight the variability in hook performance across a range of tropical demersal finfish species. The most obvious conservation benefits for both target and non-target species arise from using smaller sized hooks and non-offset circle hooks. Fishers should be encouraged to use these hook configurations to reduce the potential for post-release mortality of released fish.
Resumo:
When recapturing satellite collared wild dogs that had been trapped one month previous in padded foothold traps, we noticed varying degrees of pitting on the pads of their trapped paw. Veterinary advice, based on images taken of the injuries, suggests that the necrosis was caused by vascular compromise. Five of six dingoes we recaptured had varying degrees of necrosis restricted only to the trapped foot and ranging from single 5 mm holes to 25% sections of the toe pads missing or deformed, including loss of nails. The traps used were rubber-padded, two–coiled, Victor Soft Catch #3 traps. The springs are not standard Victor springs but were Beefer springs; these modifications slightly increase trap speed and the jaw pressure on the trapped foot. Despite this modification the spring pressure is still relatively mild in comparison to conventional long spring or four-coiled wild dog traps. The five wild dogs developing necrosis were trapped in November 2006 at 5-6 months of age. Traps were checked each morning so the dogs were unlikely to have been restrained in the trap for more than 12 hours. All dogs exhibited a small degree of paw damage at capture which presented itself as a swollen paw and compression at the capture point. In contrast, eight wild dogs, 7-8 month-old, were captured two months later in February. Upon their release, on advice from a veterinarian, we massaged the trapped foot to get blood flow back in to the foot and applied a bruise treatment (Heparinoid 8.33 mg/ml) to assist restoring blood flow. These animals were subsequently recaptured several months later and showed no signs of necrosis. While post-capture foot injuries are unlikely to be an issue in conventional control programs where the animal is immediately destroyed, caution needs to be used when releasing accidentally captured domestic dogs or research animals captured in rubber-padded traps. We have demonstrated that 7-8 month old dogs can be trapped and released without any evidence of subsequent necrosis following minimal veterinary treatment. We suspect that the rubber padding on traps may increase the tourniquet effect by wrapping around the paw and recommend the evaluation of offset laminated steel jaw traps as an alternative. Offset laminated steel jaw traps have been shown to be relatively humane producing as few foot injuries as rubber-jawed traps.
Resumo:
For many fisheries, there is a need to develop appropriate indicators, methodologies, and rules for sustainably harvesting marine resources. Complexities of scientific and financial factors often prevent addressing these, but new methodologies offer significant improvements on current and historical approaches. The Australian spanner crab fishery is used to demonstrate this. Between 1999 and 2006, an empirical management procedure using linear regression of fishery catch rates was used to set the annual total allowable catch (quota). A 6-year increasing trend in catch rates revealed shortcomings in the methodology, with a 68% increase in quota calculated for the 2007 fishing year. This large quota increase was prevented by management decision rules. A revised empirical management procedure was developed subsequently, and it achieved a better balance between responsiveness and stability. Simulations identified precautionary harvest and catch rate baselines to set quotas that ensured sustainable crab biomass and favourable performance for management and industry. The management procedure was simple to follow, cost-effective, robust to strong trends and changes in catch rates, and adaptable for use in many fisheries. Application of such “tried-and-tested” empirical systems will allow improved management of both data-limited and data-rich fisheries.
Resumo:
Catches of sharks and bycatch in large-mesh nets and baited drumlines used by the Queensland Shark Control Program were examined to determine the efficacy of both gear types and assess fishing strategies that minimise their impacts. There were few significant differences in the size of both sharks and bycatch in the two gear types, apart from significantly smaller (p < 0.05) tiger sharks Galeocerdo cuvier being taken on drumlines and smaller green turtles Chelonia mydas in nets. Catch per unit effort showed orders of magnitude differences among species, even within the same family. Hammerhead sharks and rays were particularly vulnerable to net capture, whereas higher catch rates of tiger sharks were observed for drumlines. Nets caught more marine mammals, teleost fish and rays, whereas drumlines exhibited higher catch rates of the threatened loggerhead turtle Caretta caretta. Survival of most taxa (particularly obligate ram ventilators) was lower in nets than drumlines. Bycatch species (turtles and marine mammals) were able to swim to the surface to breathe when they were hooked on drumlines, enhancing their survival potential. Fishing strategies that recognise the different selectivity patterns of the gear can be developed to suit local biotic and abiotic conditions, although it is recognised that quantification of both ecological risk and risk to bathers is not a simple task.
Resumo:
Standardised time series of fishery catch rates require collations of fishing power data on vessel characteristics. Linear mixed models were used to quantify fishing power trends and study the effect of missing data encountered when relying on commercial logbooks. For this, Australian eastern king prawn (Melicertus plebejus) harvests were analysed with historical (from vessel surveys) and current (from commercial logbooks) vessel data. Between 1989 and 2010, fishing power increased up to 76%. To date, both forward-filling and, alternatively, omitting records with missing vessel information from commercial logbooks produce broadly similar fishing power increases and standardised catch rates, due to the strong influence of years with complete vessel data (16 out of 23 years of data). However, if gaps in vessel information had not originated randomly and skippers from the most efficient vessels were the most diligent at filling in logbooks, considerable errors would be introduced. Also, the buffering effect of complete years would be short lived as years with missing data accumulate. Given ongoing changes in fleet profile with high-catching vessels fishing proportionately more of the fleet’s effort, compliance with logbook completion, or alternatively ongoing vessel gear surveys, is required for generating accurate estimates of fishing power and standardised catch rates.
Resumo:
Suitable long term species-specific catch rate and biological data are seldom available for large shark species, particularly where historical commercial logbook reporting has been poor. However, shark control programs can provide suitable data from gear that consistently fishes nearshore waters all year round. We present an analysis of the distribution of 4757 . Galeocerdo cuvier caught in surface nets and on drumlines across 9 of the 10 locations of the Queensland Shark Control Program (QSCP) between 1993 and 2010. Standardised catch rates showed a significant decline (p<. 0.0001) in southern Queensland locations for both gear types, which contrasts with studies at other locations where increases in tiger shark catch per unit effort (CPUE) have been reported. Significant temporal declines in the average size of tiger sharks occurred at four of the nine locations analysed (p<. 0.05), which may be indicative of fishing reducing abundance in these areas. Given the long term nature of shark control programs along the Australian east coast, effects on local abundance should have been evident many years ago, which suggests that factors other than the effects of shark control programs have also contributed to the decline. While reductions in catch rate are consistent with a decline in tiger shark abundance, this interpretation should be made with caution, as the inter-annual CPUE varies considerably at most locations. Nevertheless, the overall downward trend, particularly in southern Queensland, indicates that current fishing pressures on the species may be unsustainable. © 2012 Elsevier B.V.
Resumo:
The Northern Demersal Scalefish Fishery has historically comprised a small fleet (≤10 vessels year−1) operating over a relatively large area off the northwest coast of Australia. This multispecies fishery primarily harvests two species of snapper: goldband snapper, Pristipomoides multidens and red emperor, Lutjanus sebae. A key input to age-structured assessments of these stocks has been the annual time-series of the catch rate. We used an approach that combined Generalized Linear Models, spatio-temporal imputation, and computer-intensive methods to standardize the fishery catch rates and report uncertainty in the indices. These analyses, which represent one of the first attempts to standardize fish trap catch rates, were also augmented to gain additional insights into the effects of targeting, historical effort creep, and spatio-temporal resolution of catch and effort data on trap fishery dynamics. Results from monthly reported catches (i.e. 1993 on) were compared with those reported daily from more recently (i.e. 2008 on) enhanced catch and effort logbooks. Model effects of catches of one species on the catch rates of another became more conspicuous when the daily data were analysed and produced estimates with greater precision. The rate of putative effort creep estimated for standardized catch rates was much lower than estimated for nominal catch rates. These results therefore demonstrate how important additional insights into fishery and fish population dynamics can be elucidated from such “pre-assessment” analyses.
Resumo:
Snapper (Pagrus auratus) is widely distributed throughout subtropical and temperate southern oceans and forms a significant recreational and commercial fishery in Queensland, Australia. Using data from government reports, media sources, popular publications and a government fisheries survey carried out in 1910, we compiled information on individual snapper fishing trips that took place prior to the commencement of fisherywide organized data collection, from 1871 to 1939. In addition to extracting all available quantitative data, we translated qualitative information into bounded estimates and used multiple imputation to handle missing values, forming 287 records for which catch rate (snapper fisher−1 h−1) could be derived. Uncertainty was handled through a parametric maximum likelihood framework (a transformed trivariate Gaussian), which facilitated statistical comparisons between data sources. No statistically significant differences in catch rates were found among media sources and the government fisheries survey. Catch rates remained stable throughout the time series, averaging 3.75 snapper fisher−1 h−1 (95% confidence interval, 3.42–4.09) as the fishery expanded into new grounds. In comparison, a contemporary (1993–2002) south-east Queensland charter fishery produced an average catch rate of 0.4 snapper fisher−1 h−1 (95% confidence interval, 0.31–0.58). These data illustrate the productivity of a fishery during its earliest years of development and represent the earliest catch rate data globally for this species. By adopting a formalized approach to address issues common to many historical records – missing data, a lack of quantitative information and reporting bias – our analysis demonstrates the potential for historical narratives to contribute to contemporary fisheries management.
Resumo:
Reproductive variables are provided for batoids regularly taken as by-catch in the east coast otter-trawl fishery on the inner-mid continental shelf off the south-east and central coasts of Queensland, Australia. Total length at maturity (LT50 and 95% c.i.) for the eastern shovelnose ray Aptychotrema rostrata was 639·5 mm (617·6–663·4 mm) for females and 597·3 mm (551·4–648·6 mm) for males. Litter size (n = 9) ranged from nine to 20 (mean ± s.e. = 15·1 ± 1·2). This species exhibited a positive litter size–maternal size relationship. Disc width at maturity (WD50 and 95% c.i.) for the common stingaree Trygonoptera testacea was 162·7 mm (155·8–168·5 mm) for females and 145·9 mm (140·2–150·2 mm) for males. Gravid T. testacea (n = 6) each carried a single egg in the one functional (left) uterus. Disc width at maturity (WD50 and 95% c.i.) for the Kapala stingaree Urolophus kapalensis was 153·7 mm (145·1–160·4 mm) for females and 155·2 mm (149·1–159·1 mm) for males. Gravid U. kapalensis (n = 16) each carried a single egg or embryo in the one functional (left) uterus. A single female yellowback stingaree Urolophus sufflavus carried an embryo in each uterus. A global review of the litter sizes of shovelnose rays (Rhinobatidae) and stingarees (Urolophidae) is provided.
Resumo:
In Queensland, stout whiting are fished by Danish seine and fish otter-trawl methods between Sandy Cape and the Queensland-New South Wales border. The fishery is currently identified by a T4 symbol and is operated by two primary quota holders. Since 1997, T4 management has been informed by annual stock assessments in order to determine a total allowable commercial catch (TACC) quota. The TACC is assessed before the start of each fishing year using statistical methodologies. This includes evaluation of trends in fish catch-rates and catch-at-age frequencies against management reference points. The T4 stout whiting TACC for 2014 was adjusted down to 1150 t as a result of elevated estimates of fishing mortality and remained unchanged in 2015 (2013 TACC = 1350 t quota). Two T4 vessels fished for stout whiting in the 2015 fishing year, harvesting 663 t from Queensland waters. Annual T4 landings of stout whiting averaged about 713 t for the fishing years 2013–2015, with a maximum harvest in the last 10 fishing years of 1140 t and a maximum historical harvest of 2400 t in the 1995. Stout whiting catch rates from both Queensland and New South Wales were analysed for all vessels, areas and fishing gears. The 2015 catch rate index was equal to 0.85, down 15% compared to the 2010–2015 fishing year average (reference point =1). The stout whiting fish length and otolith weight frequencies indicated larger and older fish in the calendar year 2014. This data was translated to show improved measures of fish survival at about 38% per year and near the reference point of about 41%. Together, the stout whiting catch rate and survival indicators show the fishery was sustainable. Earlier population modelling conducted for the year 2013 also suggested the stock was sustainable, but the estimate was only marginally above the biomass for maximum sustainable yield. Irrespective, reasons for reduced catch rates should be examined further and interpreted with precaution, particularly given the TACC has been under-caught in many years. For setting of the 2016 TACC, alternate analyses and reference points were compared to address data uncertainties and provide options for quota change. The results were dependent on the stock indicator and harvest procedure used. Uncertainty in all TACC estimates should be considered as they were sensitive to the data inputs and assumptions. For the 2016 T4 fishing year, upper levels of harvest should be limited to 1000–1100 t following procedure equation 1, with target levels of harvest at 750–850 t for procedure equation 2. Use of these estimates to set TACC will depend on management and industry intentions.
Resumo:
Snapper (Pagrus auratus) is widely distributed throughout subtropical and temperate southern oceans and forms a significant recreational and commercial fishery in Queensland, Australia. Using data from government reports, media sources, popular publications and a government fisheries survey carried out in 1910, we compiled information on individual snapper fishing trips that took place prior to the commencement of fisherywide organized data collection, from 1871 to 1939. In addition to extracting all available quantitative data, we translated qualitative information into bounded estimates and used multiple imputation to handle missing values, forming 287 records for which catch rate (snapper fisher−1 h−1) could be derived. Uncertainty was handled through a parametric maximum likelihood framework (a transformed trivariate Gaussian), which facilitated statistical comparisons between data sources. No statistically significant differences in catch rates were found among media sources and the government fisheries survey. Catch rates remained stable throughout the time series, averaging 3.75 snapper fisher−1 h−1 (95% confidence interval, 3.42–4.09) as the fishery expanded into new grounds. In comparison, a contemporary (1993–2002) south-east Queensland charter fishery produced an average catch rate of 0.4 snapper fisher−1 h−1 (95% confidence interval, 0.31–0.58). These data illustrate the productivity of a fishery during its earliest years of development and represent the earliest catch rate data globally for this species. By adopting a formalized approach to address issues common to many historical records – missing data, a lack of quantitative information and reporting bias – our analysis demonstrates the potential for historical narratives to contribute to contemporary fisheries management.