7 resultados para immunological synapse

em eResearch Archive - Queensland Department of Agriculture


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A panel of 19 monoclonal antibodies (mAbs) was used to study the immunological variability of Lettuce mosaic virus (LMV), a member of the genus Potyvirus, and to perform a first epitope characterization of this virus. Based on their specificity of recognition against a panel of 15 LMV isolates, the mAbs could be clustered in seven reactivity groups. Surface plasmon resonance analysis indicated the presence, on the LMV particles, of at least five independent recognition/binding regions, correlating with the seven mAbs reactivity groups. The results demonstrate that LMV shows significant serological variability and shed light on the LMV epitope structure. The various mAbs should prove a new and efficient tool for LMV diagnostic and field epidemiology studies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tick resistant cattle could provide a potentially sustainable and environmentally sound method of controlling cattle ticks. Advances in genomics and the availability of the bovine genome sequence open up opportunities to identify useful and selectable genes controlling cattle tick resistance. Using quantitative real-time PCR and the Affymetrix bovine array platform, differences in gene expression of skin biopsies from tick resistant Bos indicus (Brahman) and tick susceptible Bos taurus (Holstein-Friesian) cattle following tick challenge were examined. We identified 138 significant differentially-expressed genes, including several immunological/host defence genes, extracellular matrix proteins, and transcription factors as well as genes involved in lipid metabolism. Three key pathways, represented by genes differentially expressed in resistant Brahmans, were identified; the development of the cell-mediated immune response, structural integrity of the dermis and intracellular Ca 2+ levels. Ca2+, which is implicated in host responses to microbial stimuli, may be required for the enhancement or fine-tuning of transcriptional activation of Ca2+- dependant host defence signalling pathways. Animal Genomics for Animal Health International Symposium, Paris, October 2007: (Proceedings)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Exoskeletal hardening in crustaceans can be attributed to mineralization and sclerotization of the organic matrix. Glycoproteins have been implicated in the calcification process of many matrices. Sclerotization, on the other hand, is catalysed by phenoloxidases, which also play a role in melanization and the immunological response in arthropods. Custom cDNA microarrays from Portunus pelagicus were used to identify genes possibly associated with the activation pathways involved in these processes. Results: Two genes potentially involved in the recognition of glycosylation, the C-type lectin receptor and the mannose-binding protein, were found to display molt cycle-related differential expression profiles. C-type lectin receptor up-regulation was found to coincide with periods associated with new uncalcified cuticle formation, while the up-regulation of mannose-binding protein occurred only in the post-molt stage, during which calcification takes place, implicating both in the regulation of calcification. Genes presumed to be involved in the phenoloxidase activation pathway that facilitates sclerotization also displayed molt cycle-related differential expression profiles. Members of the serine protease superfamily, trypsin-like and chymotrypsin-like, were up-regulated in the intermolt stage when compared to post-molt, while trypsin-like was also up-regulated in pre-molt compared to ecdysis. Additionally, up-regulation in pre- and intermolt stages was observed by transcripts encoding other phenoloxidase activators including the putative antibacterial protein carcinin-like, and clotting protein precursor-like. Furthermore, hemocyanin, itself with phenoloxidase activity, displayed an identical expression pattern to that of the phenoloxidase activators, i.e. up-regulation in pre- and intermolt. Conclusion: Cuticle hardening in crustaceans is a complex process that is precisely timed to occur in the post-molt stage of the molt cycle. We have identified differential expression patterns of several genes that are believed to be involved in biomineralization and sclerotization and propose possible regulatory mechanisms for these processes based on their expression profiles, such as the potential involvement of C-type lectin receptors and mannose binding protein in the regulation of calcification.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A genetic solution to breech strike control is attractive, as it is potentially permanent, cumulative, would not involve increased use of chemicals and may ultimately reduce labour inputs. There appears to be significant opportunity to reduce the susceptibility of Merinos to breech strike by genetic means although it is unlikely that in the short term breeding alone will be able to confer the degree of protection provided by mulesing and tail docking. Breeding programmes that aim to replace surgical techniques of flystrike prevention could potentially: reduce breech wrinkle; increase the area of bare skin in the perineal area; reduce tail length and wool cover on and near the tail; increase shedding of breech wool; reduce susceptibility to internal parasites and diarrhoea; and increase immunological resistance to flystrike. The likely effectiveness of these approaches is reviewed and assessed here. Any breeding programme that seeks to replace surgical mulesing and tail docking will need to make sheep sufficiently resistant that the increased requirement for other strike management procedures remains within practically acceptable bounds and that levels of strike can be contained to ethically acceptable levels.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bos taurus indicus cattle are less susceptible to infestation with Rhipicephalus (Boophilus) microplus than Bos taurus taurus cattle but the immunological basis of this difference is not understood. We compared the dynamics of leukocyte infiltrations (T cell subsets, B cells, major histocompatibility complex (MHC) class II-expressing cells, granulocytes) in the skin near the mouthparts of larvae of R. microplus in B. t. indicus and B. t. taurus cattle. Previously naïve cattle were infested with 50,000 larvae (B. t. indicus) or 10,000 larvae (B. t. taurus) weekly for 6 weeks. One week after the last infestation all of the animals were infested with 20,000 larvae of R. microplus. Skin punch biopsies were taken from all animals on the day before the primary infestation and from sites of larval attachment on the day after the first, second, fourth and final infestations. Infiltrations with CD3+, CD4+, CD8+ and [gamma][delta] T cells followed the same pattern in both breeds, showing relatively little change during the first four weekly infestations, followed by substantial increases at 7 weeks post-primary infestation. There was a tendency for more of all cell types except granulocytes to be observed in the skin of B. t. indicus cattle but the differences between the two breeds were consistently significant only for [gamma][delta] T cells. Granulocyte infiltrations increased more rapidly from the day after infestation and were higher in B. t. taurus cattle than in B. t. indicus. Granulocytes and MHC class II-expressing cells infiltrated the areas closest to the mouthparts of larvae. A large volume of granulocyte antigens was seen in the gut of attached, feeding larvae.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rhipicephalus micro plus is an important bovine ectoparasite, widely distributed in tropical and subtropical regions of the world causing large economic losses to the cattle industry. Its success as an ectoparasite is associated with its capacity to disarm the antihemostatic and anti-inflammatory reactions of the host. Serpins are protease inhibitors with an important role in the modulation of host-parasite interactions. The cDNA that encodes for a R. microplus serpin was isolated by RACE and subsequently cloned into the pPICZ alpha A vector. Sequence analysis of the cDNA and predicted amino acid showed that this cDNA has a conserved serpin domain. B- and T-cell epitopes were predicted using bioinformatics tools. The recombinant R. microplus serpin (rRMS-3) was secreted into the culture media of Pichia pastoris after methanol induction at 0.2 mg l(-1) qRT-PCR expression analysis of tissues and life cycle stages demonstrated that RMS-3 was mainly expressed in the salivary glands of female adult ticks. Immunological recognition of the rRMS-3 and predicted B-cell epitopes was tested using tick-resistant and susceptible cattle sera. Only sera from tick-resistant bovines recognized the B-cell epitope AHYNPPPPIEFT (Seq7). The recombinant RMS-3 was expressed in P. pastoris, and ELISA screening also showed higher recognition by tick-resistant bovine sera. The results obtained suggest that RMS-3 is highly and specifically secreted into the bite site of R. microplus feeding on tick-resistant bovines. Capillary feeding of semi-engorged ticks with anti-AHYNPPPPIEFT sheep sera led to an 81.16% reduction in the reproduction capacity of R. microplus. Therefore, it is possible to conclude that R. microplus serpin (RMS-3) has an important role in the host-parasite interaction to overcome the immune responses in resistant cattle. (C) 2012 Elsevier GmbH. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Amino functionalised mesoporous silica nanoparticles (AM-41) have been identified as a promising vaccine delivery material. The capacity of AM-41 to stabilise vaccine components at ambient temperature (23–27 °C) was determined by adsorbing the model antigen ovalbumin (OVA) to AM-41 particles (OVA-41). The OVA-41 was successfully freeze-dried using the excipients 5% trehalose and 1% PEG8000. Both the immunological activity of OVA and the nanoparticle structure were maintained following two months storage at ambient temperature. The results of immunisation studies in mice with reconstituted OVA-41 demonstrated the induction of humoral and cell-meditated immune responses. The capacity of AM-41 particles to facilitate ambient storage of vaccine components without loss of immunological potency will underpin the further development of this promising vaccine delivery platform.