2 resultados para hydroxyapatite chromatography
em eResearch Archive - Queensland Department of Agriculture
Resumo:
Immunoglobulin Y is different from most of the other immunoglobulins because it does not bind protein A or protein G. Thiophilic gel chromatography has been successfully used to purify IgY from chicken egg yolk, but the technology has not previously been used to purify IgY from serum. In this research note, we describe the optimization of T-gel chromatography for purification of IgY from serum. Data are provided on the recovery and purity of IgY obtained using potassium sulfate buffers of different concentrations. Decreasing the strength of potassium sulfate buffer from 0.5 to 0.3 M did not alter the amount of IgY recovered but increased the purity. Using 0.3 M potassium sulphate, we recovered approximately 63.7% of the serum Ig as almost pure IgY.
Resumo:
Cattle grazing in arid rangelands of Australia suffer periodic extensive and serious poisoning by the plant species Pimelea trichostachya, P. simplex, and P. elongata. Pimelea poisoning (also known as St. George disease and Marree disease) has been attributed to the presence of the diterpenoid orthoester simplexin in these species. However, literature relating to previous studies is complicated by taxonomic revisions, and the presence of simplexin has not previously been verified in all currently recognized taxa capable of inducing pimelea poisoning syndrome, with no previous chemical studies of P. trichostachya (as currently classified) or P. simplex subsp. continua. We report here the isolation of simplexin from P. trichostachya and the development of a liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS) method to measure simplexin concentrations in pimelea plant material. Simplexin was quantified by positive-ion atmospheric pressure chemical ionization (APCI) LC-MS/MS with selected reaction monitoring (SRM) of the m/z 533.3 > 253.3 transition. LC-MS/MS analysis of the four poisonous taxa P. trichostachya, P. elongata, P. simplex subsp. continua, and P. simplex subsp. simplex showed similar profiles with simplexin as the major diterpenoid ester component in all four taxa accompanied by varying amounts of related orthoesters. Similar analyses of P. decora, P. haematostachya, and P. microcephala also demonstrated the presence of simplexin in these species but at far lower concentrations, consistent with the limited reports of stock poisoning associated with these species. The less common, shrubby species P. penicillaris contained simplexin at up to 55 mg/kg dry weight and would be expected to cause poisoning if animals consumed sufficient plant material.