8 resultados para hydrated silica

em eResearch Archive - Queensland Department of Agriculture


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Develops a new technology for the delivery of biocides against agricultural pests, with biocides contained within silica nanocapsules which are themselves protected by an outer envelope, capable of being selectively broken down by the target pest. Will reduce the amount of biocide escaping into the environment, prolong the life of the biocide, reduce biocide usage rates, and reduce undesirable effects on non-target organisms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this proof-of-concept study, an agricultural biocide (imidacloprid) was effectively loaded into the mesoporous silica nanoparticles (MSNs) with different pore sizes, morphologies and mesoporous structures for termite control. This resulted in nanoparticles with a large surface area, tunable pore diameter and small particle size, which are ideal carriers for adsorption and controlled release of imidacloprid. The effect of pore size, surface area and mesoporous structure on uptake and release of imidacloprid was systematically studied. It was found that the adsorption amount and release profile of imidacloprid were dependent on the type of mesoporous structure and surface area of particles. Specifically, MCM-48 type mesoporous silica nanoparticles with a three dimensional (3D) open network structure and high surface area displayed the highest adsorption capacity compared to other types of silica nanoparticles. Release of imidacloprid from these nanoparticles was found to be controlled over 48 hours. Finally, in vivo laboratory testing on termite control proved the efficacy of these nanoparticles as delivery carriers for biopesticides. We believe that the present study will contribute to the design of more effective controlled and targeted delivery for other biomolecules.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Our work focuses on the application of mesoporous silica nanoparticles as a combined delivery vehicle and adjuvant for vaccine applications. Here we present results using the viral protein, E2, from bovine viral diarrhoea virus (BVDV). BVDV infection occurs in the target species of cattle and sheep herds worldwide and is therefore of economic importance. E2 is a major immunogenic determinant of BVDV and is an ideal candidate for the development of a subunit based nanovaccine using mesoporous silica nanoparticles. Hollow type mesoporous silica nanoparticles with surface amino functionalisation (termed HMSA) were characterised and assessed for adsorption and desorption of E2. A codon-optimised version of the E2 protein (termed Opti-E2) was produced in Escherichia coli. HMSA (120 nm) had an adsorption capacity of 80 [small mu ]g Opti-E2 per mg HMSA and once bound E2 did not dissociate from the HMSA. Immunisation studies in mice with a 20 [small mu ]g dose of E2 adsorbed to 250 [small mu ]g HMSA was compared to immunisation with Opti-E2 (50 [small mu ]g) together with the traditional adjuvant Quillaja saponaria Molina tree saponins (QuilA, 10 [small mu ]g). The humoral responses with the Opti-E2/HMSA nanovaccine although slightly lower than those obtained for the Opti-E2 + QuilA group demonstrated that HMSA particles are an effective adjuvant that stimulated E2-specific antibody responses. Importantly the cell-mediated immune responses were consistently high in all mice immunised with Opti-E2/HMSA nanovaccine formulation. Therefore we have shown the Opti-E2/HMSA nanoformulation acts as an excellent adjuvant that gives both T-helper 1 and T-helper 2 mediated responses in a small animal model. This study has provided proof-of-concept towards the development of an E2 subunit nanoparticle based vaccine.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Amino functionalised mesoporous silica nanoparticles (AM-41) have been identified as a promising vaccine delivery material. The capacity of AM-41 to stabilise vaccine components at ambient temperature (23–27 °C) was determined by adsorbing the model antigen ovalbumin (OVA) to AM-41 particles (OVA-41). The OVA-41 was successfully freeze-dried using the excipients 5% trehalose and 1% PEG8000. Both the immunological activity of OVA and the nanoparticle structure were maintained following two months storage at ambient temperature. The results of immunisation studies in mice with reconstituted OVA-41 demonstrated the induction of humoral and cell-meditated immune responses. The capacity of AM-41 particles to facilitate ambient storage of vaccine components without loss of immunological potency will underpin the further development of this promising vaccine delivery platform.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bovine Viral Diarrhoea Virus (BVDV) is widely distributed in cattle industries and causes significant economic losses worldwide annually. A limiting factor in the development of subunit vaccines for BVDV is the need to elicit both antibody and T-cell-mediated immunity as well as addressing the toxicity of adjuvants. In this study, we have prepared novel silica vesicles (SV) as the new generation antigen carriers and adjuvants. With small particle size of 50 nm, thin wall (similar to 6 nm), large cavity (similar to 40 nm) and large entrance size (5.9 nm for SV-100 and 16 nm for SV-140), the SV showed high loading capacity (similar to 250 mu g/mg) and controlled release of codon-optimised E2 (oE2) protein, a major immunogenic determinant of BVDV. The in vivo functionality of the system was validated in mice immunisation trials comparing oE2 plus Quil A (50 mu g of oE2 plus 10 mu g of Quil A, a conventional adjuvant) to the oE2/SV-140 (50 mu g of oE2 adsorbed to 250 mu g of SV-140) or oE2/SV-140 together with 10 mu g of Quil A. Compared to the oE2 plus Quil A, which generated BVDV specific antibody responses at a titre of 10(4), the oE2/SV-140 group induced a 10 times higher antibody response. In addition, the cell-mediated response, which is essential to recognise and eliminate the invading pathogens, was also found to be higher [1954-2628 spot forming units (SFU)/million cells] in mice immunised with oE2/SV-140 in comparison to oE2 plus Quil A (512-1369 SFU/million cells). Our study has demonstrated that SV can be used as the next-generation nanocarriers and adjuvants for enhanced veterinary vaccine delivery. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A rationally designed two-step synthesis of silica vesicles is developed with the formation of vesicular structure in the first step and fine control over the entrance size by tuning the temperature in the second step. The silica vesicles have a uniform size of ≈50 nm with excellent cellular uptake performance. When the entrance size is equal to the wall thickness, silica vesicles after hydrophobic modification show the highest loading amount (563 mg/g) towards Ribonuclease A with a sustained release behavior. Consequently, the silica vesicles are excellent nano-carriers for cellular delivery applications of therapeutical biomolecules.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fusarium wilt, caused by Fusarium oxysporum f. sp. cubense (Foc), is one of the most destructive diseases of banana. One potential method to manage fusarium wilt of banana is by manipulating the nutrient status in the soil. This study was conducted to determine the quality of Foc suppressive and conducive soil, the influence of soil application of silica and manure on the incidence of fusarium wilt of banana. Surveys were conducted in five banana plantations in three provinces in Indonesia: Lampung-Sumatra, West Java and Central Java. From the five locations, one location (Sala-man-Central Java) was heavily infected by Foc, another location (NTF Lampung-Sumatera) was slightly infected by Foc, while the rest (Sarampad-West Java, Talaga-West Java and GGP Lampung-Sumatra) were healthy banana plantations without Foc infection. Labile carbon analysis showed that the Foc suppressive soil had greater labile carbon content than conducive soil. Also, the analysis of fluorescein diacetate hydrolysis (FDA) and ?-glucosidase showed greater microbial activity in suppressive soil than the conducive soil. Observations of the incidence of necrotic rhizome of Foc susceptible 'Ambon Kuning' (AAA) banana cultivar showed that in the suppressive soil taken from Sarampad West Java, the application of silica and manure helped suppress fusarium wilt disease development. In the conducive soil taken from Salaman-Central Java, silica and manure applications were not able to suppress disease incidence. The result of this study indicated that in suppressive soil, the application of silica can increase plant resistance to Foc infection, while manure application can increase soil microbial activity, and suppress Foc development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bovine Viral Diarrhoea Virus (BVDV) is one of the most serious pathogen, which causes tremendous economic loss to the cattle industry worldwide, meriting the development of improved subunit vaccines. Structural glycoprotein E2 is reported to be a major immunogenic determinant of BVDV virion. We have developed a novel hollow silica vesicles (SV) based platform to administer BVDV-1 Escherichia coli-expressed optimised E2 (oE2) antigen as a nanovaccine formulation. The SV-140 vesicles (diameter 50 nm, wall thickness 6 nm, perforated by pores of entrance size 16 nm and total pore volume of 0.934 cm(3)g(-1)) have proven to be ideal candidates to load oE2 antigen and generate immune response. The current study for the first time demonstrates the ability of freeze-dried (FD) as well as non-FD oE2/SV140 nanovaccine formulation to induce long-term balanced antibody and cell mediated memory responses for at least 6 months with a shortened dosing regimen of two doses in small animal model. The in vivo ability of oE2 (100 mu g)/SV-140 (500 mu g) and FD oE2 (100 mu g)/SV-140 (500 mu g) to induce long-term immunity was compared to immunisation with oE2 (100 mu g) together with the conventional adjuvant Quil-A from the Quillaja saponira (10 mu g) in mice. The oE2/SV-140 as well as the FD oE2/SV-140 nanovaccine generated oE2-specific antibody and cell mediated responses for up to six months post the final second immunisation. Significantly, the cell-mediated responses were consistently high in mice immunised with oE2/SV-140 (1,500 SFU/million cells) at the six-month time point. Histopathology studies showed no morphological changes at the site of injection or in the different organs harvested from the mice immunised with 500 mu g SV-140 nanovaccine compared to the unimmunised control. The platform has the potential for developing single dose vaccines without the requirement of cold chain storage for veterinary and human applications.