8 resultados para human infection

em eResearch Archive - Queensland Department of Agriculture


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Hendra virus causes sporadic but typically fatal infection in horses and humans in eastern Australia. Fruit-bats of the genus Pteropus (commonly known as flying-foxes) are the natural host of the virus, and the putative source of infection in horses; infected horses are the source of human infection. Effective treatment is lacking in both horses and humans, and notwithstanding the recent availability of a vaccine for horses, exposure risk mitigation remains an important infection control strategy. This study sought to inform risk mitigation by identifying spatial and environmental risk factors for equine infection using multiple analytical approaches to investigate the relationship between plausible variables and reported Hendra virus infection in horses. Spatial autocorrelation (Global Moran’s I) showed significant clustering of equine cases at a distance of 40 km, a distance consistent with the foraging ‘footprint’ of a flying-fox roost, suggesting the latter as a biologically plausible basis for the clustering. Getis-Ord Gi* analysis identified multiple equine infection hot spots along the eastern Australia coast from far north Queensland to central New South Wales, with the largest extending for nearly 300 km from southern Queensland to northern New South Wales. Geographically weighted regression (GWR) showed the density of P. alecto and P. conspicillatus to have the strongest positive correlation with equine case locations, suggesting these species are more likely a source of infection of Hendra virus for horses than P. poliocephalus or P. scapulatus. The density of horses, climate variables and vegetation variables were not found to be a significant risk factors, but the residuals from the GWR suggest that additional unidentified risk factors exist at the property level. Further investigations and comparisons between case and control properties are needed to identify these local risk factors.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Q fever is a vaccine-preventable disease; despite this, high annual notification numbers are still recorded in Australia. We have previously shown seroprevalence in Queensland metropolitan regions is approaching that of rural areas. This study investigated the presence of nucleic acid from Coxiella burnetii, the agent responsible for Q fever, in a number of animal and environmental samples collected throughout Queensland, to identify potential sources of human infection. Samples were collected from 129 geographical locations and included urine, faeces and whole blood from 22 different animal species; 45 ticks were removed from two species, canines and possums; 151 soil samples; 72 atmospheric dust samples collected from two locations and 50 dust swabs collected from domestic vacuum cleaners. PCR testing was performed targeting the IS1111 and COM1 genes for the specific detection of C.burnetii DNA. There were 85 detections from 1318 animal samples, giving a detection rate for each sample type ranging from 2.1 to 6.8%. Equine samples produced a detection rate of 11.9%, whilst feline and canine samples showed detection rates of 7.8% and 5.2%, respectively. Native animals had varying detection rates: pooled urines from flying foxes had 7.8%, whilst koalas had 5.1%, and 6.7% of ticks screened were positive. The soil and dust samples showed the presence of C.burnetii DNA ranging from 2.0 to 6.9%, respectively. These data show that specimens from a variety of animal species and the general environment provide a number of potential sources for C.burnetii infections of humans living in Queensland. These previously unrecognized sources may account for the high seroprevalence rates seen in putative low-risk communities, including Q fever patients with no direct animal contact and those subjects living in a low-risk urban environment.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The principal objective of this study was to determine if Campylobacter jejuni genotyping methods based upon resolution optimised sets of single nucleotide polymorphisms (SNPs) and binary genetic markers were capable of identifying epidemiologically linked clusters of chicken-derived isolates. Eighty-eight C. jejuni isolates of known flaA RFLP type were included in the study. They encompassed three groups of ten isolates that were obtained at the same time and place and possessed the same flaA type. These were regarded as being epidemiologically linked. Twenty-six unlinked C. jejuni flaA type I isolates were included to test the ability of SNP and binary typing to resolve isolates that were not resolved by flaA RFLP. The remaining isolates were of different flaA types. All isolates were typed by real-time PCR interrogation of the resolution optimised sets of SNPs and binary markers. According to each typing method, the three epidemiologically linked clusters were three different clones that were well resolved from the other isolates. The 26 unlinked C. jejuni flaA type I isolates were resolved into 14 SNP-binary types, indicating that flaA typing can be unreliable for revealing epidemiological linkage. Comparison of the data with data from a fully typed set of isolates associated with human infection revealed that abundant lineages in the chicken isolates that were also found in the human isolates belonged to clonal complex (CC) -21 and CC-353, with the usually rare C-353 member ST-524 being especially abundant in the chicken collection. The chicken isolates selected to be diverse according to flaA were also diverse according to SNP and binary typing. It was observed that CC-48 was absent in the chicken isolates, despite being very common in Australian human infection isolates, indicating that this may be a major cause of human disease that is not chicken associated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The newly emerging Australian bat lyssavirus causes rabies like disease in bats and humans. A captive juvenile black flying fox exhibited progressive neurologic signs, including sudden aggression, vocalization, dysphagia, and paresis over 9 days and then died. At necropsy, lyssavirus infection was diagnosed by fluorescent antibody test, immunoperoxidase staining, polymerase chain reaction, and virus isolation. Eight human contacts received postexposure vaccination.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two human deaths caused by Australian bat lyssavirus (ABL) infection have been reported since 1996. Information was obtained from 205 persons (mostly adults from south Brisbane and the South Coast of Queensland), who reported potential ABL exposure to the Brisbane Southside Public Health Unit from November 1,1996, to January 31, 1999. Volunteer animal handlers accounted for 39% of potential exposures, their family members for 12%, professional animal handlers for 14%, community members who intentionally handled bats for 31%, and community members with contacts initiated by bats for 4%. The prevalence of Lyssavirus detected by fluorescent antibody test in 366 sick, injured, or orphaned bats from the area was 6%. Sequelae of exposure, including the requirement for expensive postexposure prophylaxis, may be reduced by educating bat handlers and the public of the risks involved in handling Australian bats.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

No commercial immunodiagnostic tests for human scabies are currently available, and existing animal tests are not sufficiently sensitive. The recombinant Sarcoptes scabiei apolipoprotein antigen Sar s 14.3 is a promising immunodiagnostic, eliciting high levels of IgE and IgG in infected people. Limited data are available regarding the temporal development of antibodies to Sar s 14.3, an issue of relevance in terms of immunodiagnosis. We utilised a porcine model to prospectively compare specific antibody responses to a primary infestation by ELISA, to Sar s 14.3 and to S. scabiei whole mite antigen extract (WMA). Differences in the antibody profile between antigens were apparent, with Sar s 14.3 responses detected earlier, and declining significantly after peak infestation compared to WMA. Both antigens resulted in >90% diagnostic sensitivity from weeks 8–16 post infestation. These data provide important information on the temporal development of humoral immune responses in scabies and further supports the development of recombinant antigen based immunodiagnostic tests for recent scabies infestations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Trichinella nematodes are the causative agent of trichinellosis, a meat-borne zoonosis acquired by consuming undercooked, infected meat. Although most human infections are sourced from the domestic environment, the majority of Trichinella parasites circulate in the natural environment in carnivorous and scavenging wildlife. Surveillance using reliable and accurate diagnostic tools to detect Trichinella parasites in wildlife hosts is necessary to evaluate the prevalence and risk of transmission from wildlife to humans. Real-time PCR assays have previously been developed for the detection of European Trichinella species in commercial pork and wild fox muscle samples. We have expanded on the use of real-time PCR in Trichinella detection by developing an improved extraction method and SYBR green assay that detects all known Trichinella species in muscle samples from a greater variety of wildlife. We simulated low-level Trichinella infections in wild pig, fox, saltwater crocodile, wild cat and a native Australian marsupial using Trichinella pseudospiralis or Trichinella papuae ethanol-fixed larvae. Trichinella-specific primers targeted a conserved region of the small subunit of the ribosomal RNA and were tested for specificity against host and other parasite genomic DNAs. The analytical sensitivity of the assay was at least 100 fg using pure genomic T. pseudospiralis DNA serially diluted in water. The diagnostic sensitivity of the assay was evaluated by spiking log of each host muscle with T. pseudospiralis or T. papuae larvae at representative infections of 1.0, 0.5 and 0.1 larvae per gram, and shown to detect larvae at the lowest infection rate. A field sample evaluation on naturally infected muscle samples of wild pigs and Tasmanian devils showed complete agreement with the EU reference artificial digestion method (k-value = 1.00). Positive amplification of mouse tissue experimentally infected with T. spiralis indicated the assay could also be used on encapsulated species in situ. This real-time PCR assay offers an alternative highly specific and sensitive diagnostic method for use in Trichinella wildlife surveillance and could be adapted to wildlife hosts of any region. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Phylogenetic group D extraintestinal pathogenic Escherichia coli (ExPEC), including O15:K52:H1 and clonal group A, have spread globally and become fluoroquinolone-resistant. Here we investigated the role of canine feces as a reservoir of these (and other) human-associated ExPEC and their potential as canine pathogens. We characterized and compared fluoroquinolone-resistant E. coli isolates originally identified as phylogenetic group D from either the feces of hospitalized dogs (n = 67; 14 dogs) or extraintestinal infections (n = 53; 33 dogs). Isolates underwent phylogenetic grouping, random amplified polymorphic DNA (RAPD) analysis, virulence genotyping, resistance genotyping, human-associated ExPEC O-typing, and multi-locus sequence typing. Five of seven human-associated sequence types (STs) exhibited ExPEC-associated O-types, and appeared in separate RAPD clusters. The largest subgroup (16 fecal, 26 clinical isolates) were ST354 (phylogroup F) isolates. ST420 (phylogroup B2); O1-ST38, O15:K52:H1-ST393, and O15:K1-ST130 (phylogroup D); and O7-ST457, and O1-ST648 (phylogroup F) were also identified. Three ST-specific RAPD sub-clusters (ST354, ST393, and ST457) contained closely related isolates from both fecal or clinical sources. Genes encoding CTX-M and AmpC β-lactamases were identified in isolates from five STs. Major human-associated fluoroquinolone-resistant ± extended-spectrum cephalosporin-resistant ExPEC of public health importance may be carried in dog feces and cause extraintestinal infections in some dogs.