204 resultados para host species
em eResearch Archive - Queensland Department of Agriculture
Resumo:
Aconophora compressa Walker (Hemiptera: Membracidae) was released in 1995 against the weed lantana in Australia, and is now found on multiple host plant species. The intensity and regularity at which A. compressa uses different host species was quantified in its introduced Australian range and also its native Mexican range. In Australia, host plants fell into three statistically defined categories, as indicated by the relative rates and intensities at which they were used in the field. Fiddlewood (Citharexylum spinosum L.: Verbenaceae) was used much more regularly and at higher densities than any other host sampled, and alone made up the first group. The second group, lantana (Lantana camara L.: Verbenaceae; pink variety) and geisha girl (Duranta erecta L.: Verbenaceae), were used less regularly and at much lower densities than fiddlewood. The third group, Sheena’s gold (another variety of D. erecta), jacaranda (Jacaranda mimosifolia D. Don: Bignoniaceae) and myoporum (Myoporum acuminatum R. Br.: Myoporaceae), were used infrequently and at even lower densities. In Mexico, the insect was found at relatively low densities on all hosts relative to those in Australia. Densities were highest on L. urticifolia, D. erecta and Tecoma stans (L.) Juss. ex Kunth (Bignoniaceae), which were used at similar rates to one another. It was found also on a few other verbenaceous and non-verbenaceous host species but at even lower densities. The relative rate at which Citharexylum spp. and L. urticifolia were used could not be assessed in Mexico because A. compressa was found on only one plant of each species in areas where these host species co-occurred. The low rate at which A. compressa occurred on fiddlewood in Mexico is likely to be an artefact of the short-term nature of the surveys or differences in the suites of Citharexylum and Lantana species available there. These results provide further incentive to insist on structured and quantified surveys of non-target host use in the native range of potential biological control agents prior to host testing studies in quarantine.
Resumo:
Weed biocontrol relies on host specificity testing, usually carried out under quarantine conditions to predict the future host range of candidate control agents. The predictive power of host testing can be scrutinised directly with Aconophora compressa, previously released against the weed Lantana camara L. (lantana) because its ecology in its new range (Australia) is known and includes the unanticipated use of several host species. Glasshouse based predictions of field host use from experiments designed a posteriori can therefore be compared against known field host use. Adult survival, reproductive output and egg maturation were quantified. Adult survival did not differ statistically across the four verbenaceous hosts used in Australia. Oviposition was significantly highest on fiddlewood (Citharexylum spinosum L.), followed by lantana, on which oviposition was significantly higher than on two varieties of Duranta erecta (‘‘geisha girl’’ and ‘‘Sheena’s gold’’; all Verbenaceae). Oviposition rates across Duranta varieties were not significantly different from each other but were significantly higher than on the two non-verbenaceous hosts (Jacaranda mimosifolia D. Don: Bignoneaceae (jacaranda) and Myoporum acuminatum R. Br.: Myoporaceae (Myoporum)). Production of adult A. compressa was modelled across the hosts tested. The only major discrepancy between model output and their relative abundance across hosts in the field was that densities on lantana in the field were much lower than predicted by the model. The adults may, therefore, not locate lantana under field conditions and/or adults may find lantana but leave after laying relatively few eggs. Fiddlewood is the only primary host plant of A. compressa in Australia, whereas lantana and the others are used secondarily or incidentally. The distinction between primary, secondary and incidental hosts of a herbivore species helps to predict the intensity and regularity of host use by that herbivore. Populations of the primary host plants of a released biological control agent are most likely to be consistently impacted by the herbivore, whereas secondary and incidental host plant species are unlikely to be impacted consistently. As a consequence, potential biocontrol agents should be released only against hosts to which they have been shown to be primarily adapted.
Resumo:
Ruminant livestock are important sources of human food and global greenhouse gas emissions. Feed degradation and methane formation by ruminants rely on metabolic interactions between rumen microbes and affect ruminant productivity. Rumen and camelid foregut microbial community composition was determined in 742 samples from 32 animal species and 35 countries, to estimate if this was influenced by diet, host species, or geography. Similar bacteria and archaea dominated in nearly all samples, while protozoal communities were more variable. The dominant bacteria are poorly characterised, but the methanogenic archaea are better known and highly conserved across the world. This universality and limited diversity could make it possible to mitigate methane emissions by developing strategies that target the few dominant methanogens. Differences in microbial community compositions were predominantly attributable to diet, with the host being less influential. There were few strong co-occurrence patterns between microbes, suggesting that major metabolic interactions are non-selective rather than specific. © 2015 Macmillan Publishers Limited.
Resumo:
Diaporthe (syn. Phomopsis) species are well-known saprobes, endophytes or pathogens on a range of plants. Several species have wide host ranges and multiple species may sometimes colonise the same host species. This study describes eight novel Diaporthe species isolated from live and/or dead tissue from the broad acre crops lupin, maize, mungbean, soybean and sunflower, and associated weed species in Queensland and New South Wales, as well as the environmental weed bitou bush (Chrysanthemoides monilifera subsp. rotundata) in eastern Australia. The new taxa are differentiated on the basis of morphology and DNA sequence analyses based on the nuclear ribosomal internal transcribed spacer region, and part of the translation elongation factor-1α and ß-tubulin genes. The possible agricultural significance of live weeds and crop residues ('green bridges') as well as dead weeds and crop residues ('brown bridges') in aiding survival of the newly described Diaporthe species is discussed.
Resumo:
The potential for large-scale use of a sensitive real time reverse transcription polymerase chain reaction (RT-PCR) assay was evaluated for the detection of Tomato spotted wilt virus (TSWV) in single and bulked leaf samples by comparing its sensitivity with that of DAS-ELISA. Using total RNA extracted with RNeasy® or leaf soak methods, real time RT-PCR detected TSWV in all infected samples collected from 16 horticultural crop species (including flowers, herbs and vegetables), two arable crop species, and four weed species by both assays. In samples in which DAS-ELISA had previously detected TSWV, real time RT-PCR was effective at detecting it in leaf tissues of all 22 plant species tested at a wide range of concentrations. Bulk samples required more robust and extensive extraction methods with real time RT-PCR, but it generally detected one infected sample in 1000 uninfected ones. By contrast, ELISA was less sensitive when used to test bulked samples, once detecting up to 1 infected in 800 samples with pepper but never detecting more than 1 infected in 200 samples in tomato and lettuce. It was also less reliable than real time RT-PCR when used to test samples from parts of the leaf where the virus concentration was low. The genetic variability among Australian isolates of TSWV was small. Direct sequencing of a 587 bp region of the nucleoprotein gene (S RNA) of 29 isolates from diverse crops and geographical locations yielded a maximum of only 4.3% nucleotide sequence difference. Phylogenetic analysis revealed no obvious groupings of isolates according to geographic origin or host species. TSWV isolates, that break TSWV resistance genes in tomato or pepper did not differ significantly in the N gene region studied, indicating that a different region of the virus genome is responsible for this trait.
Resumo:
Degradation of RNA in diagnostic specimens can cause false-negative test results and potential misdiagnosis when tests rely on the detection of specific RNA sequence. Current molecular methods of checking RNA integrity tend to be host species or group specific, necessitating libraries of primers and reaction conditions. The objective here was to develop a universal (multi-species) quality assurance tool for determining the integrity of RNA in animal tissues submitted to a laboratory for analyses. Ribosomal RNA (16S rRNA) transcribed from the mitochondrial 16S rDNA was used as template material for reverse transcription to cDNA and was amplified using polymerase chain reaction (PCR). As mitochondrial DNA has a high level of conservation, the primers used were shown to reverse transcribe and amplify RNA from every animal species tested. Deliberate degradation of rRNA template through temperature abuse of samples resulted in no reverse transcription and amplification. Samples spiked with viruses showed that single-stranded viral RNA and rRNA in the same sample degraded at similar rates, hence reverse transcription and PCR amplification of 16S rRNA could be used as a test of sample integrity and suitability for analysis that required the sample's RNA, including viral RNA. This test will be an invaluable quality assurance tool for determination of RNA integrity from tissue samples, thus avoiding erroneous test results that might occur if degraded target RNA is used unknowingly as template material for reverse transcription and subsequent PCR amplification.
Resumo:
A survey was conducted to establish the distribution of the liver fluke, Fasciola hepatica, in the state of Queensland, Australia, and to evaluate the impact of the introduced snail intermediate hosts, Pseudosuccinia columella and Austropeplea viridis. Serum samples from a total of 5103 homebred cattle in 142 beef herds distributed throughout the state and 523 pooled milk samples from dairy herds from the state's major dairying regions were tested for antibodies to F. hepatica by ELISA. Snails were collected on infected properties around the limits of the F. hepatica distribution. F. hepatica infection was detected in 44 dairy herds and two beef herds. The distribution of infected herds indicates that F. hepatica is established only in southeast Queensland. The distribution there was patchy but the parasite was more widespread than suggested by an earlier survey. The predominant intermediate host species found along the northern limit of the distribution was P. columella. We conclude that the introduction of P. columella and A. viridis has not yet had a major impact on the distribution of F. hepatica in Queensland. However, the presence of P. columella, which is much more adaptable to tropical habitats than the native intermediate host, Austropeplea tomentosa, at the northern limit of the F. hepatica distribution suggests that there is potential for the parasite to expand its range.
Resumo:
Candidatus Phytoplasma australiense (Ca. P. australiense) is associated with the plant diseases strawberry lethal yellows (SLY), strawberry green petal (SGP), papaya dieback (PDB), Australian grapevine yellows (AGY) and Phormium yellow leaf (PYL; New Zealand). Strawberry lethal yellows disease is also associated with a rickettsia-like-organism (RLO) or infrequently with the tomato big bud (TBB) phytoplasma, the latter being associated with a wide range of plant diseases throughout Australia. In contrast, the RLO has been identified only in association with SLY disease, and Ca. P. australiense has been detected only in a limited number of plant host species. The aim of this study was to identify plant hosts that are possible reservoirs of Ca. P. australiense and the SLY RLO. Thirty-one plant species from south-east Queensland were observed with disease between 2001 and 2003 and, of these, 18 species tested positive using phytoplasma-specific primers. The RLO was detected in diseased Jacksonia scoparia and Modiola caroliniana samples collected at Stanthorpe. The TBB phytoplasma was detected in 16 different plant species and Ca. P. australiense Australian grapevine yellows strain was detected in six species. The TBB phytoplasma was detected in plants collected at Nambour, Stanthorpe, Warwick and Brisbane. Ca. P. australiense was detected in plants collected at Nambour, Stanthorpe, Gatton and Allora. All four phytoplasmas were detected in diseased Gomphocarpus physocarpus plants collected at Toowoomba, Allora, Nambour and Gatton. These results indicated that the vector(s) of Ca. P. australiense are distributed throughout south-east Queensland and the diversity of phytoplasmas detected in G. physocarpus suggests it is a feeding source for phytoplasma insect vectors or it has a broad susceptibility to a range of phytoplasmas.
Resumo:
Multidrug-resistant Escherichia colt sequence type 131 (51131) has recently emerged as a globally distributed cause of extraintestinal infections in humans. Diverse factors have been investigated as explanations for ST131's rapid and successful dissemination, including transmission through animal contact and consumption of food, as suggested by the detection of ST131 in a number of nonhuman species. For example, ST131 has recently been identified as a cause of clinical infection in companion animals and poultry, and both host groups have been confirmed as faecal carriers of ST131. Moreover, a high degree of similarity has been shown among certain ST131 isolates from humans, companion animals, and poultry based on resistance characteristics and genomic background and human and companion animal ST131 isolates tend to exhibit similar virulence genotypes. However, most ST131 isolates from poultry appear to possess specific virulence genes that are typically absent from human and companion animal isolates, including genes associated with avian pathogenic E. coli. Since the number of reported animal and food-associated ST131 isolates is quite small, the role of nonhuman host species in the emergence, dissemination, and transmission of ST131 to humans remains unclear. Nevertheless, given the profound public health importance of the emergent ST131 clonal group, even the limited available evidence indicates a pressing need for further careful study of this significant question.
Resumo:
Microfungi that cause disease or are associated with diseased plants in the wet tropics of northern Queensland are listed. A total of 206 host-pathogen combinations on 148 host species has been compiled from the results of plant disease surveys in the Wet Tropics World Heritage Area in 1992 and 1993, from herbarium records and from previously published host-pathogen combinations.
Resumo:
Twenty macropods from five locations in Queensland, Australia, grazing on a variety of native pastures were surveyed and the bacterial community of the foregut was examined using 454-amplicon pyrosequencing. Specifically, the V3/V4 region of 16S rRNA gene was examined. A total of 5040 OTUs were identified in the data set (post filtering). Thirty-two OTUs were identified as 'shared' OTUS (i.e. present in all samples) belonging to either Firmicutes or Bacteroidetes (Clostridiales/Bacteroidales). These phyla predominated the general microbial community in all macropods. Genera represented within the shared OTUs included: unclassified Ruminococcaceae, unclassified Lachnospiraceae, unclassified Clostridiales, Peptococcus sp. Coprococcus spp., Streptococcus spp., Blautia sp., Ruminoccocus sp., Eubacterium sp., Dorea sp., Oscillospira sp. and Butyrivibrio sp. The composition of the bacterial community of the foregut samples of each the host species (Macropus rufus, Macropus giganteus and Macropus robustus) was significantly different allowing differentiation between the host species based on alpha and beta diversity measures. Specifically, eleven dominant OTUs that separated the three host species were identified and classified as: unclassified Ruminococcaceae, unclassified Bacteroidales, Prevotella spp. and a Syntrophococcus sucromutans. Putative reductive acetogens and fibrolytic bacteria were also identified in samples. Future work will investigate the presence and role of fibrolytics and acetogens in these ecosystems. Ideally, the isolation and characterization of these organisms will be used for enhanced feed efficiency in cattle, methane mitigation and potentially for other industries such as the biofuel industry.
Resumo:
Background: Betaretroviruses infect a wide range of species including primates, rodents, ruminants, and marsupials. They exist in both endogenous and exogenous forms and are implicated in animal diseases such as lung cancer in sheep, and in human disease, with members of the human endogenous retrovirus-K (HERV-K) group of endogenous betaretroviruses (βERVs) associated with human cancers and autoimmune diseases. To improve our understanding of betaretroviruses in an evolutionarily distinct host species, we characterized βERVs present in the genomes and transcriptomes of mega- and microbats, which are an important reservoir of emerging viruses.Results: A diverse range of full-length βERVs were discovered in mega- and microbat genomes and transcriptomes including the first identified intact endogenous retrovirus in a bat. Our analysis revealed that the genus Betaretrovirus can be divided into eight distinct sub-groups with evidence of cross-species transmission. Betaretroviruses are revealed to be a complex retrovirus group, within which one sub-group has evolved from complex to simple genomic organization through the acquisition of an env gene from the genus Gammaretrovirus. Molecular dating suggests that bats have contended with betaretroviral infections for over 30 million years.Conclusions: Our study reveals that a diverse range of betaretroviruses have circulated in bats for most of their evolutionary history, and cluster with extant betaretroviruses of divergent mammalian lineages suggesting that their distribution may be largely unrestricted by host species barriers. The presence of βERVs with the ability to transcribe active viral elements in a major animal reservoir for viral pathogens has potential implications for public health. © 2013 Hayward et al.; licensee BioMed Central Ltd.
Resumo:
Puccinia psidii has long been considered a significant threat to Australian plant industries and ecosystems. In April 2010, P. psidii was detected for the first time in Australia on the central coast of New South Wales (NSW). The fungus spread rapidly along the east coast and in December 2010 was found in Queensland (Qld) followed by Victoria a year later. Puccinia psidii was initially restricted to the southeastern part of Qld but spread as far north as Mossman. In Qld, 48 species of Myrtaceae are considered highly or extremely susceptible to the disease. The impact of P. psidii on individual trees and shrubs has ranged from minor leaf spots, foliage, stem and branch dieback to reduced fecundity. Tree death, as a result of repeated infection, has been recorded for Rhodomyrtus psidioides. Rust infection has also been recorded on flower buds, flowers and fruits of 28 host species. Morphological and molecular characteristics were used to confirm the identification of P. psidii from a range of Myrtaceae in Qld and compared with isolates from NSW and overseas. A reconstructed phylogeny based on the LSU and SSU regions of rDNA did not resolve the familial placement of P. psidii, but indicated that it does not belong to the Pucciniaceae. Uredo rangelii was found to be con-specific with all isolates of P. psidii in morphology, ITS and LSU sequence data, and host range.
Resumo:
A specimen of downy mildew on leaves of Sphagneticola trilobata found in northern Queensland was identified by a systematic approach as a novel species of Plasmopara. A new species, Plasmopara sphagneticolae, is proposed for this specimen, which differs from other species of Plasmopara by morphology, host range, and sequence data from nuclear-ribosomal DNA and mitochondrial DNA. Plasmopara sphagneticolae, together with P. halstedii, are downy mildews found on host species in the tribe Heliantheae (Asteraceae). Plasmopara halstedii causes downy mildew on Helianthus annuus, and is not present on sunflower in Australia. Phylogenetic analysis of the large subunit region of ribosomal DNA showed that P. sphagneticolae was sister to P. halstedii on sunflower.
Resumo:
A specimen of downy mildew on leaves of Sphagneticola trilobata found in northern Queensland was identified by a systematic approach as a novel species of Plasmopara. A new species, Plasmopara sphagneticolae, is proposed for this specimen, which differs from other species of Plasmopara by morphology, host range, and sequence data from nuclear-ribosomal DNA and mitochondrial DNA. Plasmopara sphagneticolae, together with P. halstedii, are downy mildews found on host species in the tribe Heliantheae (Asteraceae). Plasmopara halstedii causes downy mildew on Helianthus annuus, and is not present on sunflower in Australia. Phylogenetic analysis of the large subunit region of ribosomal DNA showed that P. sphagneticolae was sister to P. halstedii on sunflower.