6 resultados para homology

em eResearch Archive - Queensland Department of Agriculture


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two genes encoding polyphenol oxidase (PPO) were isolated from pineapple (Ananas comosus[L.] Merr. cv. Smooth Cayenne). Sequence analyses showed that both contained a single intron and encoded typical chloroplast-localized PPO proteins, the sequences of which corresponded to two pineapple PPO cDNAs, PINPPO1 and PINPPO2, recently described by Stewart et al. (2001). Southern blot analyses suggested that pineapple contained only two PPO genes. Analysis of expression of PINPPO1 promoter GUS fusion constructs showed this promoter had a low basal activity and was cold- and wound-inducible, consistent with known mRNA expression profiles. Striking homologies to gibberellin response complexes (GARC) were observed in sequences of both the PINPPO1 and PINPPO2 promoters. Transient assays in mature pineapple fruit and stable expression in transgenic tobacco showed that PINPPO1 promoter-GUS fusions were indeed gibberellin (GA) responsive. A role for the element within the putative GARCs in mediating GA-responsiveness of the PINPPO1 promoter was confirmed by mutational analysis. PINPPO2 was also shown to be GA-responsive by RT-PCR analysis. Mutant PINPPO1 promoter-GUS fusion constructs, which were no longer GA-inducible, showed a delayed response to cold induction in pineapple fruit in transient assays, suggesting a role for GA in blackheart development. This was supported by observations that exogenous GA3 treatment induced blackheart in the absence of chilling. Sequences showing homology to GARCs are also present in some PPO promoters in tomato, suggesting that GA regulates PPO expression in diverse species.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As part of a comparative mapping study between sugarcane and sorghum, a sugarcane cDNA clone with homology to the maize Rp1-D rust resistance gene was mapped in sorghum. The cDNA probe hybridised to multiple loci, including one on sorghum linkage group (LG) E in a region where a major rust resistance QTL had been previously mapped. Partial sorghum Rp1-D homologues were isolated from genomic DNA of rust-resistant and -susceptible progeny selected from a sorghum mapping population. Sequencing of the Rp1-D homologues revealed five discrete sequence classes: three from resistant progeny and two from susceptible progeny. PCR primers specific to each sequence class were used to amplify products from the progeny and confirmed that the five sequence classes mapped to the same locus on LG E. Cluster analysis of these sorghum sequences and available sugarcane, maize and sorghum Rp1-D homologue sequences showed that the maize Rp1-D sequence and the partial sugarcane Rp1-D homologue were clustered with one of the sorghum resistant progeny sequence classes, while previously published sorghum Rp1-D homologue sequences clustered with the susceptible progeny sequence classes. Full-length sequence information was obtained for one member of a resistant progeny sequence class ( Rp1-SO) and compared with the maize Rp1-D sequence and a previously identified sorghum Rp1 homologue ( Rph1-2). There was considerable similarity between the two sorghum sequences and less similarity between the sorghum and maize sequences. These results suggest a conservation of function and gene sequence homology at the Rp1 loci of maize and sorghum and provide a basis for convenient PCR-based screening tools for putative rust resistance alleles in sorghum.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Most plant disease resistance (R) genes encode proteins with a nucleotide binding site and leucine-rich repeat structure (NBS-LRR). In this study, degenerate primers were used to amplify genomic NBS-type sequences from wild banana (Musa acuminata ssp. malaccensis) plants resistant to the fungal pathogen Fusarium oxysporum formae specialis (f. sp.) cubense (FOC) race 4. Five different classes of NBS-type sequences were identified and designated as resistance gene candidates (RGCs). The deduced amino acid sequences of the RGCs revealed the presence of motifs characteristic of the majority of known plant NBS-LRR resistance genes. Structural and phylogenetic analyses grouped the banana RGCs within the non-TIR (homology to Toll/interleukin-1 receptors) subclass of NBS sequences. Southern hybridization showed that each banana RGC is present in low copy number. The expression of the RGCs was assessed by RT-PCR in leaf and root tissues of plants resistant or susceptible to FOC race 4. RGC1, 3 and 5 showed a constitutive expression profile in both resistant and susceptible plants whereas no expression was detected for RGC4. Interestingly, RGC2 expression was found to be associated only to FOC race 4 resistant lines. This finding could assist in the identification of a FOC race 4 resistance gene.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nodal root angle in sorghum influences vertical and horizontal root distribution in the soil profile and is thus relevant to drought adaptation. In this study, we report for the first time on the mapping of four QTL for nodal root angle (qRA) in sorghum, in addition to three QTL for root dry weight, two for shoot dry weight, and three for plant leaf area. Phenotyping was done at the six leaf stage for a mapping population (n = 141) developed by crossing two inbred sorghum lines with contrasting root angle. Nodal root angle QTL explained 58.2% of the phenotypic variance and were validated across a range of diverse inbred lines. Three of the four nodal root angle QTL showed homology to previously identified root angle QTL in rice and maize, whereas all four QTL co-located with previously identified QTL for stay-green in sorghum. A putative association between nodal root angle QTL and grain yield was identified through single marker analysis on field testing data from a subset of the mapping population grown in hybrid combination with three different tester lines. Furthermore, a putative association between nodal root angle QTL and stay-green was identified using data sets from selected sorghum nested association mapping populations segregating for root angle. The identification of nodal root angle QTL presents new opportunities for improving drought adaptation mechanisms via molecular breeding to manipulate a trait for which selection has previously been very difficult.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The genera Ustilago, Sporisorium and Macalpinomyces are a polyphyletic complex of plant pathogenic fungi. The four main morphological characters used to define these genera have been considered homoplasious and not useful for resolving the complex. This study re-evaluates character homology and discusses the use of these characters for defining monophyletic groups recovered from a reconstructed phylogeny using four nuclear loci. Generic delimitation of smut fungi based on their hosts is also discussed as a means for identifying genera within this group. Morphological characters and host specificity can be used to circumscribe genera within the Ustilago-Sporisorium-Macalpinomyces complex.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective of the present study was to establish a valid transformation method of Haemophilus parasuis, the causative agent of Glasser's disease in pigs, using a novel H. parasuis-Escherichia coli shuttle vector. A 4.2 kb endogenous plasmid pYC93 was extracted from an H. parasuis field isolate and completely sequenced. Analysis of pYC93 revealed a region approximately 800 bp showing high homology with the defined replication origin oriV of pLS88, a native plasmid identified in Haemophilus ducreyi. Based on the origin region of pYC93, E. coli cloning vector pBluescript SK(+) and the Tn903 derived kanamycin cassette, a shuttle vector pSHK4 was constructed by overlapping PCR strategy. When electroporation of the 15 H. parasuis serovar reference strains and one clinical isolate SH0165 with pSHK4 was performed, only one of these strains yielded transformants with an efficiency of 8.5 x 10(2) CFUhlg of DNA. Transformation efficiency was notably increased (1.3 x 10(5) CFU/mu g of DNA) with vector DNA reisolated from the homologous transformants. This demonstrated that restriction-modification systems were involved in the barrier to transformation of H. parasuis. By utilizing an in vitro DNA modification method with cell-free extracts of the host H. parasuis strains, 15 out of 16 strains were transformable. The novel shuttle vector pSHK4 and the established electrotransformation method constitute useful tools for the genetic manipulation of H. parasuis to gain a better understanding of the pathogen. (C) 2011 Elsevier B.V. All rights reserved.