3 resultados para growth medium

em eResearch Archive - Queensland Department of Agriculture


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Two isolates of Haemophilus paragallinarum were obtained from a layer chicken in Mexico. The isolates were confirmed as H. paragallinarum by polymerase chain reaction and conventional biochemical identification. The isolates were nicotinamide adenine dinucleotide (NAD) independent—growing on blood agar without the need of a nurse colony as well as on a complex medium that lacked both NAD and chicken serum. Both isolates were pathogenic, causing the typical clinical signs of infectious coryza in susceptible chickens. One isolate was Page serovar B/Kume serovar B-1 and the other isolate was Page serovar C/Kume serovar C-2. The isolates were associated with a field outbreak that involved an egg drop of 20% over a 3 wk period and a doubling of weekly mortality (from 0.1% to 0.2%). This is the first report of NAD-independent H. paragallinarum outside South Africa and is the first time that NADindependent H. paragallinarum of serovar B has been reported. Abbreviations: NAD ¼ nicotinamide adenine dinucleotide; NAM ¼ nicotinamide; PCR ¼ polymerase chain reaction; TM ¼ complete growth medium without chicken serum or nicotinamide adenine dinucleotide; TM/SN ¼ complete growth medium that contains both chicken serum and nicotinamide adenine dinucleotide

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Growth, morphogenesis and function of roots are influenced by the concentration and form of nutrients present in soils, including low molecular mass inorganic N (IN, ammonium, nitrate) and organic N (ON, e.g. amino acids). Proteins, ON of high molecular mass, are prevalent in soils but their possible effects on roots have received little attention. Here, we investigated how externally supplied protein of a size typical of soluble soil proteins influences root development of axenically grown Arabidopsis. Addition of low to intermediate concentrations of protein (bovine serum albumen, BSA) to IN-replete growth medium increased root dry weight, root length and thickness, and root hair length. Supply of higher BSA concentrations inhibited root development. These effects were independent of total N concentrations in the growth medium. The possible involvement of phytohormones was investigated using Arabidopsis with defective auxin (tir1-1 and axr2-1) and ethylene (ein2-1) responses. That no phenotype was observed suggests a signalling pathway is operating independent of auxin and ethylene responses. This study expands the knowledge on N form-explicit responses to demonstrate that ON of high molecular mass elicits specific responses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is at the population level that an invasion either fails or succeeds. Lantana camara L. (Verbenaceae) is a weed of great significance in Queensland Australia and globally but its whole life-history ecology is poorly known. Here we used 3 years of field data across four land use types (farm, hoop pine plantation and two open eucalyptus forests, including one with a triennial fire regime) to parameterise the weed’s vital rates and develop size-structured matrix models. Lantana camara in its re-colonization phase, as observed in the recently cleared hoop pine plantation, was projected to increase more rapidly (annual growth rate, λ = 3.80) than at the other three sites (λ 1.88–2.71). Elasticity analyses indicated that growth contributed more (64.6 %) to λ than fecundity (18.5 %) or survival (15.5 %), while across size groups, the contribution was of the order: juvenile (19–27 %) ≥ seed (17–28 %) ≥ seedling (16–25 %) > small adult (4–26 %) ≥ medium adult (7–20 %) > large adult (0–20 %). From a control perspective it is difficult to determine a single weak point in the life cycle of lantana that might be exploited to reduce growth below a sustaining rate. The triennial fire regime applied did not alter the population elasticity structure nor resulted in local control of the weed. However, simulations showed that, except for the farm population, periodic burning could work within 4–10 years for control of the weed, but fire frequency should increase to at least once every 2 years. For the farm, site-specific control may be achieved by 15 years if the biennial fire frequency is tempered with increased burning intensity.