32 resultados para global tissue rotation
em eResearch Archive - Queensland Department of Agriculture
Resumo:
Continuous cultivation and cereal cropping of southern Queensland soils previously supporting native vegetation have resulted in reduced soil nitrogen supply, and consequently decreased cereal grain yields and low grain protein. To enhance yields and protein concentrations of wheat, management practices involving N fertiliser application, with no-tillage and stubble retention, grain legumes, and legume leys were evaluated from 1987 to 1998 on a fertility-depleted Vertosol at Warra, southern Queensland. The objective of this study was to examine the effect of lucerne in a 2-year lucerne–wheat rotation for its nitrogen and disease-break benefits to subsequent grain yield and protein content of wheat as compared with continuous wheat cropping. Dry matter production and nitrogen yields of lucerne were closely correlated with the total rainfall for October–September as well as March–September rainfall. Each 100 mm of total rainfall resulted in 0.97 t/ha of dry matter and 26 kg/ha of nitrogen yield. For the March–September rainfall, the corresponding values were 1.26 t/ha of dry matter and 36 kg/ha of nitrogen yield. The latter values were 10% lower than those produced by annual medics during a similar period. Compared with wheat–wheat cropping, significant increases in total soil nitrogen were observed only in 1990, 1992 and 1994 but increases in soil mineralisable nitrogen were observed in most years following lucerne. Similarly, pre-plant nitrate nitrogen in the soil profile following lucerne was higher by 74 kg/ha (9–167 kg N/ha) than that of wheat–wheat without N fertiliser in all years except 1996. Consequently, higher wheat grain protein (7 out of 9 seasons) and grain yield (4 out of 9 seasons) were produced compared with continuous wheat. There was significant depression in grain yield in 2 (1993 and 1995) out of 9 seasons attributed to soil moisture depletion and/or low growing season rainfall. Consequently, the overall responses in yield were lower than those of 50 kg/ha of fertiliser nitrogen applied to wheat–wheat crops, 2-year medic–wheat or chickpea–wheat rotation, although grain protein concentrations were higher following lucerne. The incidence and severity of the soilborne disease, common root rot of wheat caused by Bipolaris sorokiniana, was generally higher in lucerne–wheat than in continuous wheat with no nitrogen fertiliser applications, since its severity was significantly correlated with plant available water at sowing. No significant incidence of crown rot or root lesion nematode was observed. Thus, productivity, which was mainly due to nitrogen accretion in this experiment, can be maintained where short duration lucerne leys are grown in rotations with wheat.
Resumo:
Degradation of RNA in diagnostic specimens can cause false-negative test results and potential misdiagnosis when tests rely on the detection of specific RNA sequence. Current molecular methods of checking RNA integrity tend to be host species or group specific, necessitating libraries of primers and reaction conditions. The objective here was to develop a universal (multi-species) quality assurance tool for determining the integrity of RNA in animal tissues submitted to a laboratory for analyses. Ribosomal RNA (16S rRNA) transcribed from the mitochondrial 16S rDNA was used as template material for reverse transcription to cDNA and was amplified using polymerase chain reaction (PCR). As mitochondrial DNA has a high level of conservation, the primers used were shown to reverse transcribe and amplify RNA from every animal species tested. Deliberate degradation of rRNA template through temperature abuse of samples resulted in no reverse transcription and amplification. Samples spiked with viruses showed that single-stranded viral RNA and rRNA in the same sample degraded at similar rates, hence reverse transcription and PCR amplification of 16S rRNA could be used as a test of sample integrity and suitability for analysis that required the sample's RNA, including viral RNA. This test will be an invaluable quality assurance tool for determination of RNA integrity from tissue samples, thus avoiding erroneous test results that might occur if degraded target RNA is used unknowingly as template material for reverse transcription and subsequent PCR amplification.
Resumo:
The accuracy of synoptic-based weather forecasting deteriorates rapidly after five days and is not routinely available beyond 10 days. Conversely, climate forecasts are generally not feasible for periods of less than 3 months, resulting in a weather-climate gap. The tropical atmospheric phenomenon known as the Madden-Julian Oscillation (MJO) has a return interval of 30 to 80 days that might partly fill this gap. Our near-global analysis demonstrates that the MJO is a significant phenomenon that can influence daily rainfall patterns, even at higher latitudes, via teleconnections with broadscale mean sea level pressure (MSLP) patterns. These weather states provide a mechanistic basis for an MJO-based forecasting capacity that bridges the weather-climate divide. Knowledge of these tropical and extra-tropical MJO-associated weather states can significantly improve the tactical management of climate-sensitive systems such as agriculture.
Resumo:
Two reliable small-plant bioassays were developed using tissue-cultured banana, resulting in consistent symptom expression and infection by Fusarium oxysporum f. sp. cubense (Foc). One bioassay was based on providing a constant watertable within a closed pot and the second used free-draining pots. Culture medium for spore generation influenced infectivity of Foc. Inoculation of potted banana by drenching potting mix with a conidial suspension, consisting mostly of microconidia, few macroconidia and no chlamydospores, generated from one-quarter-strength potato dextrose agar + streptomycin sulfate, resulted in inconsistent infection. When a conidial suspension that consisted of all three spore types, microconidia, macroconidia and chlamydospores, prepared from spores generated on carnation leaf agar was used, all plants became infected, indicating that the spore type present in conidial suspensions may contribute to inconsistency of infection. Inconsistency of infection was not due to loss of virulence of the pathogen in culture. Millet grain precolonised by Foc as a source of inoculum resulted in consistent infection between replicate plants. Sorghum was not a suitable grain for preparation of inoculum as it was observed to discolour roots and has the potential to stunt root growth, possibly due to the release of phytotoxins. For the modified closed-pot system, a pasteurised potting mix consisting of equal parts of bedding sand, perlite and vermiculite plus 1 g/L Triabon slow release fertiliser was suitable for plant growth and promoted capillary movement of water through the potting mix profile. A suitable potting mix for the free-draining pot system was also developed.
Resumo:
The distribution and nutritional profiles of sub-tidal seagrasses from the Torres Strait were surveyed and mapped across an area of 31,000 km2. Benthic sediment composition, water depth, seagrass species type and nutrients were sampled at 168 points selected in a stratified representative pattern. Eleven species of seagrass were present at 56 (33.3%) of the sample points. Halophila spinulosa, Halophila ovalis, Cymodocea serrulata and Syringodium isoetifolium were the most common species and these were nutrient profiled. Sub-tidal seagrass distribution (and associated seagrass nutrient concentrations) was generally confined to northern-central and south-western regions of the survey area (
Resumo:
Over 1 billion ornamental fish comprising more than 4000 freshwater and 1400 marine species are traded internationally each year, with 8-10 million imported into Australia alone. Compared to other commodities, the pathogens and disease translocation risks associated with this pattern of trade have been poorly documented. The aim of this study was to conduct an appraisal of the effectiveness of risk analysis and quarantine controls as they are applied according to the Sanitary and Phytosanitary (SPS) agreement in Australia. Ornamental fish originate from about 100 countries and hazards are mostly unknown; since 2000 there have been 16-fold fewer scientific publications on ornamental fish disease compared to farmed fish disease, and 470 fewer compared to disease in terrestrial species (cattle). The import quarantine policies of a range of countries were reviewed and classified as stringent or non-stringent based on the levels of pre-border and border controls. Australia has a stringent policy which includes pre-border health certification and a mandatory quarantine period at border of 1-3 weeks in registered quarantine premises supervised by government quarantine staff. Despite these measures there have been many disease incursions as well as establishment of significant exotic viral, bacterial, fungal, protozoal and metazoan pathogens from ornamental fish in farmed native Australian fish and free-living introduced species. Recent examples include Megalocytivirus and Aeromonas salmonicida atypical strain. In 2006, there were 22 species of alien ornamental fish with established breeding populations in waterways in Australia and freshwater plants and molluscs have also been introduced, proving a direct transmission pathway for establishment of pathogens in native fish species. Australia's stringent quarantine policies for imported ornamental fish are based on import risk analysis under the SPS agreement but have not provided an acceptable level of protection (ALOP) consistent with government objectives to prevent introduction of pests and diseases, promote development of future aquaculture industries or maintain biodiversity. It is concluded that the risk analysis process described by the Office International des Epizooties under the SPS agreement cannot be used in a meaningful way for current patterns of ornamental fish trade. Transboundary disease incursions will continue and exotic pathogens will become established in new regions as a result of the ornamental fish trade, and this will be an international phenomenon. Ornamental fish represent a special case in live animal trade where OIE guidelines for risk analysis need to be revised. Alternatively, for countries such as Australia with implied very high ALOP, the number of species traded and the number of sources permitted need to be dramatically reduced to facilitate hazard identification, risk assessment and import quarantine controls. Lead papers of the eleventh symposium of the International Society for Veterinary Epidemiology and Economics (ISVEE), Cairns, Australia
Resumo:
Reduced supplies of nitrogen (N) in many soils of southern Queensland that were cropped exhaustively with cereals over many decades have been the focus of much research to avoid declines in profitability and sustainability of farming systems. A 45-month period of mixed grass (purple pigeon grass, Setaria incrassata Stapf; Rhodes grass, Chloris gayana Kunth.) and legume (lucerne, Medicago sativa L.; annual medics, M. scutellata L. Mill. and M. truncatula Gaertn.) pasture was one of several options that were compared at a fertility-depleted Vertosol at Warra, southern Queensland, to improve grain yields or increase grain protein concentration of subsequent wheat crops. Objectives of the study were to measure the productivity of a mixed grass and legume pasture grown over 45 months (cut and removed over 36 months) and its effects on yield and protein concentrations of the following wheat crops. Pasture production (DM t/ha) and aboveground plant N yield (kg/ha) for grass, legume (including a small amount of weeds) and total components of pasture responded linearly to total rainfall over the duration of each of 3 pastures sown in 1986, 1987 and 1988. Averaged over the 3 pastures, each 100 mm of rainfall resulted in 0.52 t/ha of grass, 0.44 t/ha of legume and 0.97 t/ha of total pasture DM, there being little variation between the 3 pastures. Aboveground plant N yield of the 3 pastures ranged from 17.2 to 20.5 kg/ha per 100 mm rainfall. Aboveground legume N in response to total rainfall was similar (10.6 - 13.2 kg/ha. 100 mm rainfall) across the 3 pastures in spite of very different populations of legumes and grasses at establishment. Aboveground grass N yield was 5.2 - 7.0 kg/ha per 100mm rainfall. In most wheat crops following pasture, wheat yields were similar to that of unfertilised wheat except in 1990 and 1994, when grain yields were significantly higher but similar to that for continuous wheat fertilised with 75 kg N/ha. In contrast, grain protein concentrations of most wheat crops following pasture responded positively, being substantially higher than unfertilised wheat but similar to that of wheat fertilised with 75 kg N/ha. Grain protein averaged over all years of assay was increased by 25 - 40% compared with that of unfertilised wheat. Stored water supplies after pasture were < 134mm (< 55% of plant available water capacity); for most assay crops water storages were 67 - 110 mm, an equivalent wet soil depth of only 0.3 - 0.45 m. Thus, the crop assays of pasture benefits were limited by low water supply to wheat crops. Moreover, the severity of common root rot in wheat crop was not reduced by pasture - wheat rotation.
Resumo:
Queensland Department of Primary Industries and Fisheries Library achieved a significant breakthrough in the provision of Open Access to Australian publicly funded research with the launch of its eResearch Archive (eRA). With more than one thousand publication records, journal articles, conferences papers and research reports now available to farmers, industry representatives, academics, researchers, students and members of the public throughout the world, the archive is the first web accessible multidisciplinary science institutional repository produced by an Australian government department.
Resumo:
The fungal disease chytridiomycosis, caused by Batrachochytrium dendrobatidis, is enigmatic because it occurs globally in both declining and apparently healthy (non-declining) amphibian populations. This distribution has fueled debate concerning whether, in sites where it has recently been found, the pathogen was introduced or is endemic. In this study, we addressed the molecular population genetics of a global collection of fungal strains from both declining and healthy amphibian populations using DNA sequence variation from 17 nuclear loci and a large fragment from the mitochondrial genome. We found a low rate of DNA polymorphism, with only two sequence alleles detected at each locus, but a high diversity of diploid genotypes. Half of the loci displayed an excess of heterozygous genotypes, consistent with a primarily clonal mode of reproduction. Despite the absence of obvious sex, genotypic diversity was high (44 unique genotypes out of 59 strains). We provide evidence that the observed genotypic variation can be generated by loss of heterozygosity through mitotic recombination. One strain isolated from a bullfrog possessed as much allelic diversity as the entire global sample, suggesting the current epidemic can be traced back to the outbreak of a single clonal lineage. These data are consistent with the current chytridiomycosis epidemic resulting from a novel pathogen undergoing a rapid and recent range expansion. The widespread occurrence of the same lineage in both healthy and declining populations suggests that the outcome of the disease is contingent on environmental factors and host resistance.
Resumo:
Much research in understanding plant diseases has been undertaken, but there has been insufficient attention given to dealing with coordinated approaches to preventing and managing diseases. A global management approach is essential to the long-term sustainability of banana production. This approach would involve coordinated surveys, capacity building in developing countries, development of disease outbreak contingency plans and coordinated quarantine awareness, including on-line training in impact risk assessment and web-based diagnostic software. Free movement of banana plants and products between some banana-producing countries is causing significant pressure on the ability to manage diseases in banana. The rapid spread of Fusarium oxysporum f. sp. cubense 'tropical race 4' in Asia, bacterial wilts in Africa and Asia and black leaf streak [Mycosphaerella fijiensis] in Brazil and elsewhere are cases in point. The impact of these diseases is devastating, severely cutting family incomes and jeopardising food security around the globe. Agreements urgently need to be reached between governments to halt the movement of banana plants and products between banana-producing countries before it is too late and global food security is irreparably harmed. Black leaf streak, arguably the most serious banana disease, has become extremely difficult to control in commercial plantations in various parts of the world. Sometimes in excess of 50 fungicide sprays have to be applied each year. Disease eradication and effective disease control is not possible because there is no control of disease inoculum in non-commercial plantings in these locations. Additionally, there have been enormous sums of money invested in international banana breeding programmes over many years only to see the value of hybrid products lost too soon. 'Goldfinger' (AAAB, syn. 'FHIA-01'), for example, has recently been observed severely affected by black leaf streak in Samoa. Resistant cultivars alone cannot be relied upon in the fight against this disease. Real progress in control may only come when the local communities are engaged and become actively involved in regional programmes. Global recommendations are long overdue and urgently needed to help ensure the long-term sustainable utilisation of the products of the breeding programmes.
Resumo:
Identifying species boundaries within morphologically indistinguishable cryptic species complexes is often contentious. For the whitefly Bemisia tabaci (Gennadius) (Hemiptera: Sternorrhyncha: Aleyrodoidea: Aleyrodidae), the lack of a clear understanding about the genetic limits of the numerous genetic groups and biotypes so far identified has resulted in a lack of consistency in the application of the terms, the approaches use to apply them and in our understanding of what genetic structure within B. tabaci means. Our response has been to use mitochondrial gene cytochrome oxidase one to consider how to clearly and consistently define genetic separation. Using Bayesian phylogenetic analysis and analysis of sequence pairwise divergence we found a considerably higher to number of genetic groups than had been previously determined with two breaks in the distribution, one at 11% and another at 3.5%. At >11% divergence, 11 distinct groups were resolved, whereas at >3.5% divergence 24 groups were identified. Consensus sequences for each of these groups were determined and were shown to be useful in the correct assignment of sequences of unknown origin. The 3.5% divergence bound is consistent with species level separations in other insect taxa and Suggests that B. tabaci is it cryptic species composed of at least 24 distinct species. We further show that the placement of Bemesia atriplex (Froggatt) within the B. tabaci in, group adds further weight to the argument for species level separation within B. tabaci. This new analysis, which constructs consensus sequences and uses these its a standard against which unknown sequences call be compared, provides for the first time it consistent means of identifying the genetic hounds of each species with it high degree of certainty.
Resumo:
The impact of cropping histories (sugarcane, maize and soybean), tillage practices (conventional tillage and direct drill) and fertiliser N in the plant and 1st ratoon (1R) crops of sugarcane were examined in field trials at Bundaberg and Ingham. Average yields at Ingham (Q200) and Bundaberg (Q151) were quite similar in both the plant crop (83 t/ha and 80 t/ha, respectively) and the 1R (89 t/ha v 94 t/ha, respectively), with only minor treatment effects on CCS at each site. Cane yield responses to tillage, break history and N fertiliser varied significantly between sites. There was a 27% yield increase in the plant crop from the soybean fallow at Ingham, with soybeans producing a yield advantage over continuous cane, but there were no clear break effects at Bundaberg - possibly due to a complex of pathogenic nematodes that responded differently to soybeans and maize breaks. There was no carryover benefit of the soybean break into the 1R crop at Ingham, while at Bundaberg the maize break produced a 15% yield advantage over soybeans and continuous cane. The Ingham site recorded positive responses to N fertiliser addition in both the plant (20% yield increase) and 1R (34% yield increase) crops, but there was negligible carryover benefit from plant crop N in the 1R crop, or of a reduced N response after a soybean rotation. By contrast, the Bundaberg site showed no N response in any history in the plant crop, and only a small (5%) yield increase with N applied in the 1R crop. There was again no evidence of a reduced N response in the 1R crop after a soybean fallow. There were no significant effects of tillage on cane yields at either site, although there were some minor interactions between tillage, breaks and N management in the 1R crop at both sites. Crop N contents at Bundaberg were more than 3 times those recorded at Ingham in both the plant and 1R crops, with N concentrations in millable stalk at Ingham suggesting N deficiencies in all treatments. There was negligible additional N recovered in crop biomass from N fertiliser application or soybean residues at the Ingham site. There was additional N recovered in crop biomass in response to N fertiliser and soybean breaks at Bundaberg, but effects were small and fertiliser use efficiencies poor. Loss pathways could not be quantified, but denitrification or losses in runoff were the likely causes at Ingham while leaching predominated at Bundaberg. Results highlight the complexity involved in developing sustainable farming systems for contrasting soil types and climatic conditions. A better understanding of key sugarcane pathogens and their host range, as well as improved capacity to predict in-crop N mineralisation, will be key factors in future improvements to sugarcane farming systems.
Resumo:
The impact of three cropping histories (sugarcane, maize and soybean) and two tillage practices (conventional tillage and direct drill) on plant-parasitic and free-living nematodes in the following sugarcane crop was examined in a field trial at Bundaberg. Soybean reduced populations of lesion nematode (Pratylenchus zeae) and root-knot nematode (Meloidogyne javanica) in comparison to previous crops of sugarcane or maize but increased populations of spiral nematode (Helicotylenchus dihystera) and maintained populations of dagger nematode (Xiphinema elongatum). However the effect of soybean on P zeae and M. javanica was no longer apparent 15 weeks after planting sugarcane, while later in the season, populations of these nematodes following soybean were as high as or higher than maize or sugarcane. Populations of P zeae were initially reduced by cultivation but due to strong resurgence tended to be higher in conventionally tilled than direct drill plots at the end of the plant crop. Even greater tillage effects were observed with M. javanica and X. elongatum, as nematode populations were significantly higher in conventionally tilled than direct drill plots late in the season. Populations of free-living nematodes in the upper 10 cm of soil were initially highest following soybean, but after 15, 35 and 59 weeks were lower than after sugarcane and contained fewer omnivorous and predatory nematodes. Conventional tillage increased populations of free-living nematodes in soil in comparison to direct drill and was also detrimental to omnivorous and predatory nematodes. These results suggest that crop rotation and tillage not only affect plant-parasitic nematodes directly, but also have indirect effects by impacting on natural enemies that regulate nematode populations. More than 2 million nematodes/m(2) were often present in crop residues on the surface of direct drill plots. Bacterial-feeding nematodes were predominant in residues early in the decomposition process but fungal-feeding nematodes predominated after 15 weeks. This indicates that fungi become an increasingly important component of the detritus food web as decomposition proceeds, and that that the rate of nutrient cycling decreases with time. Correlations between total numbers of free-living nematodes and mineral N concentrations in crop residues and surface soil suggested that the free-living nematode community may provide an indication of the rate of mineralisation of N from organic matter.
Resumo:
Application and development of activities based on in vitro technologies delivering research, industry development and biosecurity activities to sustain and improve the Australian banana industry.
Resumo:
Telomere length has been purported as a biomarker for age and could offer a non-lethal method for determining the age of wild-caught individuals. Molluscs, including oysters and abalone, are the basis of important fisheries globally and have been problematic to accurately age. To determine whether telomere length could provide an alternative means of ageing molluscs, we evaluated the relationship between telomere length and age using the commercially important Sydney rock oyster (Saccostrea glomerata). Telomere lengths were estimated from tissues of known age individuals from different age classes, locations and at different sampling times. Telomere length tended to decrease with age only in young oysters less than 18 months old, but no decrease was observed in older oysters aged 2-4 years. Regional and temporal differences in telomere attrition rates were also observed. The relationship between telomere length and age was weak, however, with individuals of identical age varying significantly in their telomere length making it an imprecise age biomarker in oysters.