7 resultados para gene function
em eResearch Archive - Queensland Department of Agriculture
Resumo:
The objectives of this projects are: 1)To ensure the identification of genomic DNA markers for phosphine resistance in Rhyzopertha dominica and Tribolium castaneum; 2) To determine gene function of identified phosphine resistance genes in Rhyzopertha dominica and Tribolium castaneum; and 3) Predict future problems by characterising international resistances using our genes as a starting point to determine strong resistance can get by determining similarities with Australia.
Resumo:
The propagation of herpesvirus genomes as infectious bacterial artificial chromosomes (iBAC) has enabled the application of highly efficient strategies to investigate gene function across the genome. One of these strategies, transposition, has been used successfully on a number of herpesvirus iBACs to generate libraries of gene disruption mutants. Gene deletion studies aimed at determining the dispensable gene repertoire of the Meleagrid herpesvirus 1 (MeHV-1) genome to enhance the utility of this virus as a vaccine vector have been conducted in this report. A MeHV-1 iBAC was used in combination with the Tn5 and MuA transposition systems in an attempt to generate MeHV-1 gene interruption libraries. However, these studies demonstrated that Tn5 transposition events into the MeHV-1 genome occurred at unexpectedly low frequencies. Furthermore, characterization of genomic locations of the rare Tn5 transposon insertion events indicated a nonrandom distribution within the viral genome, with seven of the 24 insertions occurring within the gene encoding infected cell protein 4. Although insertion events with the MuA system occurred at higher frequency compared with the Tn5 system, fewer insertion events were generated than has previously been reported with this system. The characterization and distribution of these MeHV-1 iBAC transposed mutants is discussed at both the nucleotide and genomic level, and the properties of the MeHV-1 genome that could influence transposition frequency are discussed. © American Association of Avian Pathologists.
Resumo:
Wood is an important biological resource which contributes to nutrient and hydrology cycles through ecosystems, and provides structural support at the plant level. Thousands of genes are involved in wood development, yet their effects on phenotype are not well understood. We have exploited the low genomic linkage disequilibrium (LD) and abundant phenotypic variation of forest trees to explore allelic diversity underlying wood traits in an association study. Candidate gene allelic diversity was modelled against quantitative variation to identify SNPs influencing wood properties, growth and disease resistance across three populations of Corymbia citriodora subsp. variegata, a forest tree of eastern Australia. Nine single nucleotide polymorphism (SNP) associations from six genes were identified in a discovery population (833 individuals). Associations were subsequently tested in two smaller populations (130160 individuals), validating our findings in three cases for actin 7 (ACT7) and COP1 interacting protein 7 (CIP7). The results imply a functional role for these genes in mediating wood chemical composition and growth, respectively. A flip in the effect of ACT7 on pulp yield between populations suggests gene by environment interactions are at play. Existing evidence of gene function lends strength to the observed associations, and in the case of CIP7 supports a role in cortical photosynthesis.
Resumo:
As part of a comparative mapping study between sugarcane and sorghum, a sugarcane cDNA clone with homology to the maize Rp1-D rust resistance gene was mapped in sorghum. The cDNA probe hybridised to multiple loci, including one on sorghum linkage group (LG) E in a region where a major rust resistance QTL had been previously mapped. Partial sorghum Rp1-D homologues were isolated from genomic DNA of rust-resistant and -susceptible progeny selected from a sorghum mapping population. Sequencing of the Rp1-D homologues revealed five discrete sequence classes: three from resistant progeny and two from susceptible progeny. PCR primers specific to each sequence class were used to amplify products from the progeny and confirmed that the five sequence classes mapped to the same locus on LG E. Cluster analysis of these sorghum sequences and available sugarcane, maize and sorghum Rp1-D homologue sequences showed that the maize Rp1-D sequence and the partial sugarcane Rp1-D homologue were clustered with one of the sorghum resistant progeny sequence classes, while previously published sorghum Rp1-D homologue sequences clustered with the susceptible progeny sequence classes. Full-length sequence information was obtained for one member of a resistant progeny sequence class ( Rp1-SO) and compared with the maize Rp1-D sequence and a previously identified sorghum Rp1 homologue ( Rph1-2). There was considerable similarity between the two sorghum sequences and less similarity between the sorghum and maize sequences. These results suggest a conservation of function and gene sequence homology at the Rp1 loci of maize and sorghum and provide a basis for convenient PCR-based screening tools for putative rust resistance alleles in sorghum.
Resumo:
The complete nucleocapsid (N) genes of eight Australian isolates of Lettuce necrotic yellows virus (LNYV) were amplified by reverse transcription PCR, cloned and sequenced. Phylogenetic analyses of these sequences revealed two distinct subgroups of LNYV isolates. Nucleotide sequences within each subgroup were more than 96% identical but heterogeneity between groups was about 20% at the nucleotide sequence level. However, less than 4% heterogeneity was noted at the amino acid level, indicating mostly third nucleotide position changes and a strong conservation for N protein function. There was no obvious geographical or temporal separation of the subgroups in Australia.
Resumo:
Natural biological suppression of soil-borne diseases is a function of the activity and composition of soil microbial communities. Soil microbe and phytopathogen interactions can occur prior to crop sowing and/or in the rhizosphere, subsequently influencing both plant growth and productivity. Research on suppressive microbial communities has concentrated on bacteria although fungi can also influence soil-borne disease. Fungi were analyzed in co-located soils 'suppressive' or 'non-suppressive' for disease caused by Rhizoctonia solani AG 8 at two sites in South Australia using 454 pyrosequencing targeting the fungal 28S LSU rRNA gene. DNA was extracted from a minimum of 125 g of soil per replicate to reduce the micro-scale community variability, and from soil samples taken at sowing and from the rhizosphere at 7 weeks to cover the peak Rhizoctonia infection period. A total of ∼994,000 reads were classified into 917 genera covering 54% of the RDP Fungal Classifier database, a high diversity for an alkaline, low organic matter soil. Statistical analyses and community ordinations revealed significant differences in fungal community composition between suppressive and non-suppressive soil and between soil type/location. The majority of differences associated with suppressive soils were attributed to less than 40 genera including a number of endophytic species with plant pathogen suppression potentials and mycoparasites such as Xylaria spp. Non-suppressive soils were dominated by Alternaria , Gibberella and Penicillum. Pyrosequencing generated a detailed description of fungal community structure and identified candidate taxa that may influence pathogen-plant interactions in stable disease suppression. © 2014 Penton et al.
Resumo:
The goal of this research is to understand the function of allelic variation of genes underpinning the stay-green drought adaptation trait in sorghum in order to enhance yield in water-limited environments. Stay-green, a delayed leaf senescence phenotype in sorghum, is primarily an emergent consequence of the improved balance between the supply and demand of water. Positional and functional fine-mapping of candidate genes associated with stay-green in sorghum is the focus of an international research partnership between Australian (UQ/DAFFQ) and US (Texas A&M University) scientists. Stay-green was initially mapped to four chromosomal regions (Stg1, Stg2, Stg3, and Stg4) by a number of research groups in the US and Australia. Physiological dissection of near-isolines containing single introgressions of Stg QTL (Stg1-4) indicate that these QTL reduce water demand before flowering by constricting the size of the canopy, thereby increasing water availability during grain filling and, ultimately, grain yield. Stg and root angle QTL are also co-located and, together with crop water use data, suggest the role of roots in the stay-green phenomenon. Candidate genes have been identified in Stg1-4, including genes from the PIN family of auxin efflux carriers in Stg1 and Stg2, with 10 of 11 PIN genes in sorghum co-locating with Stg QTL. Modified gene expression in some of these PIN candidates in the stay-green compared with the senescent types has been found in preliminary RNA expression profiling studies. Further proof-of-function studies are underway, including comparative genomics, SNP analysis to assess diversity at candidate genes, reverse genetics and transformation.