16 resultados para future employees
em eResearch Archive - Queensland Department of Agriculture
Resumo:
In order to develop an efficient and reliable biolistics transformation system for pineapples parameters need to be optimised for growth, survival and development of explants pre- and post transformation. We have optimised in vitro conditions for culture media for the various stages of plant and callus initiation and development, and for effective selection of putative transgenic material. Shoot multiplication and proliferation is best on medium containing MS basic nutrients and vitamins with the addition of 0.1 mg/L myo-inositol, 20 g/L sucrose, 2.5 mg/L BAP and 3 g/L Phytagel, followed by transfer to basic MS medium for further development. Callus production on leaf base explants is best on MS nutrients and vitamins, to which 10 mg/L of BAP and NAA each was added. Optimum explant age for bombardment is 17-35 week old callus, while a pre-bombardment osmoticum treatment in the medium is not required. By comparing several antibiotics as selective agent, it has been established that a two-step selection of 2 fortnightly sub-cultures on 50 μg/mL of geneticin in the culture medium, followed by monthly sub-cultures on 100 μg/mL geneticin is optimal for survival of transgenic callus. Shoot regeneration from callus cultures is optimal on medium containing MS nutrients and vitamins, 5% coconut water and 400 mg/L casein hydrolysate. Plants can be readily regenerated and multiplied from transgenic callus through organogenesis. Rooting of shoots does not require any additional plant hormones to the medium. A transformation efficiency of 1 – 3.5% can be achieved, depending on the gene construct applied.
Resumo:
Techniques for the introduction of transgenes to control blackheart by particle bombardment and Agrobacterium co-transformation have been developed for pineapple cv. Smooth Cayenne. Polyphenol oxidase (PPO) is the enzyme responsible for blackheart development in pineapple fruit following chilling injury. Sense, anti-sense and hairpin constructs were used as a means to suppress PPO expression in plants. Average transformation efficiency for biolistics was approximately 1% and for Agrobacterium was approximately 1.5%. These results were considered acceptable given the high regeneration potential of between 80-90% from callus cultures. Southern blot analysis revealed stable integration of transgenes with lower copy number found in plants transformed with Agrobacterium compared to those transformed by biolistics. Over 5000 plants from 55 transgenic lines are now undergoing field evaluation in Australia
Resumo:
Occurrence and Importance: Anthracnose is presently recognized as the most important field and post-harvest disease of mango worldwide (Ploetz and Prakasli, 1997). It is the major disease limiting fruit production in all countries where mangoes are grown, especially where high humidity prevails during the cropping season. The post-harvest phase is the most damaging and economically significant phase of the disease worldwide. It directly affects the marketable fruit rendering it worthless. This phase is directly linked to the field phase where initial infection usually starts on young twigs and leaves and spreads to the flowers, causing blossom blight and destroying the inflorescences and even preventing fruit set.
Resumo:
Using DNA markers in plant breeding with marker-assisted selection (MAS) could greatly improve the precision and efficiency of selection, leading to the accelerated development of new crop varieties. The numerous examples of MAS in rice have prompted many breeding institutes to establish molecular breeding labs. The last decade has produced an enormous amount of genomics research in rice, including the identification of thousands of QTLs for agronomically important traits, the generation of large amounts of gene expression data, and cloning and characterization of new genes, including the detection of single nucleotide polymorphisms. The pinnacle of genomics research has been the completion and annotation of genome sequences for indica and japonica rice. This information-coupled with the development of new genotyping methodologies and platforms, and the development of bioinformatics databases and software tools-provides even more exciting opportunities for rice molecular breeding in the 21st century. However, the great challenge for molecular breeders is to apply genomics data in actual breeding programs. Here, we review the current status of MAS in rice, current genomics projects and promising new genotyping methodologies, and evaluate the probable impact of genomics research. We also identify critical research areas to "bridge the application gap" between QTL identification and applied breeding that need to be addressed to realize the full potential of MAS, and propose ideas and guidelines for establishing rice molecular breeding labs in the postgenome sequence era to integrate molecular breeding within the context of overall rice breeding and research programs.
Resumo:
The authors overview integrated pest management (IPM) in grain crops in north-eastern Australia, which is defined as the area north of latitude 32°S. Major grain crops in this region include the coarse grains (winter and summer cereals), oilseeds and pulses. IPM in these systems is complicated by the diversity of crops, pests, market requirements and cropping environments. In general, the pulse crops are at greatest risk, followed by oilseeds and then by cereal grains. Insecticides remain a key grain pest management tool in north-eastern Australia. IPM in grain crops has benefited considerably through the increased adoption of new, more selective insecticides and biopesticides for many caterpillar pests, in particular Helicoverpa spp. and loopers, and the identification of pest-crop scenarios where spraying is unnecessary (e.g. for most Creontiades spp. populations in soybeans). This has favoured the conservation of natural enemies in north-eastern Australia grain crops, and has arguably assisted in the management of silverleaf whitefly in soybeans in coastal Queensland. However, control of sucking pests and podborers such as Maruca vitrata remains a major challenge for IPM in summer pulses. Because these crops have very low pest-damage tolerances and thresholds, intervention with disruptive insecticides is frequently required, particularly during podfill. The threat posed by silverleaf whitefly demands ongoing multi-pest IPM research, development and extension as this pest can flare under favourable seasonal conditions, especially where disruptive insecticides are used injudiciously. The strong links between researchers and industry have facilitated the adoption of IPM practices in north-eastern Australia and augers well for future pest challenges and for the development and promotion of new and improved IPM tactics.
Resumo:
Aphids can cause substantial damage to cereals, oilseeds and legumes through direct feeding and through the transmission of plant pathogenic viruses. Aphid-resistant varieties are only available for a limited number of crops. In Australia, growers often use prophylactic sprays to control aphids, but this strategy can lead to non-target effects and the development of insecticide resistance. Insecticide resistance is a problem in one aphid pest of Australian grains in Australia, the green peach aphid (Myzus persicae). Molecular analyses of field-collected samples demonstrate that amplified E4 esterase resistance to organophosphate insecticides is widespread in Australian grains across Australia. Knockdown resistance to pyrethroids is less abundant, but has an increased frequency in areas with known frequent use of these insecticides. Modified acetylcholinesterase resistance to dimethyl carbamates, such as pirimicarb, has not been found in Australia, nor has resistance to imidacloprid. Australian grain growers should consider control options that are less likely to promote insecticide resistance, and have reduced impacts on natural enemies. Research is ongoing in Australia and overseas to provide new strategies for aphid management in the future.
Resumo:
Specimen-based records of most of the plant pathogens that occur in Australia can be accessed through the Australian Plant Disease Database and the Australian Plant Pest Database. These databases and the herbaria that underpin them are important resources for resolving quarantine and trade issues as well as for the diagnosis of plant diseases. The importance of these collections and databases to Australia's agricultural industries is discussed.
Resumo:
Improving the genetic base of cultivars that underpin commercial mango production is generally recognized as necessary for long term industry stability. Genetic improvement can take many approaches to improve cultivars, each with their own advantages and disadvantages. This paper will discuss several approaches used in the genetic improvement of mangoes in Australia, including varietal introductions, selection of monoembryonic progeny, selection within polyembryonic populations, assisted open pollination and controlled closed pollination. The current activities of the Australian National Mango Breeding Program will be outlined, and the analysis and use of hybrid phenotype data from the project for selection of next generation parents will be discussed. Some of the important traits that will enhance the competitiveness of future cultivars will be introduced and the challenges in achieving them discussed. The use of a genomics approach and its impact on future mango breeding is examined.
Resumo:
The Queensland Fisheries Strategy 2009-2014 sets the direction for the future of fisheries and aims to address some of the challenges impacting Queensland's fisheries both from within Australia and abroad. Every year in Queensland almost a million people fish for a living, for recreation, or for traditional and customary purposes. Countless others rely on sustainable fisheries as the focus of tourism and other businesses - but there are major challenges for the fishing sector. Fisheries resources are finite and under significant stress. Fisheries face challenges including the potential for over-exploitation by all fishing sectors, increasing consumer demand, a rising population, coastal development, the effects of climate change, biosecurity risks, import competition and rising production costs.
Resumo:
Computer simulation modelling is an essential aid in building an integrated understanding of how different factors interact to affect the evolutionary and population dynamics of herbicide resistance, and thus in helping to predict and manage how agricultural systems will be affected. In this review, we first discuss why computer simulation modelling is such an important tool and framework for dealing with herbicide resistance. We then explain what questions related to herbicide resistance have been addressed to date using simulation modelling, and discuss the modelling approaches that have been used, focusing first on the earlier, more general approaches, and then on some newer, more innovative approaches. We then consider how these approaches could be further developed in the future, by drawing on modelling techniques that are already employed in other areas, such as individual-based and spatially explicit modelling approaches, as well as the possibility of better representing genetics, competition and economics, and finally the questions and issues of importance to herbicide resistance research and management that could be addressed using these new approaches are discussed. We conclude that it is necessary to proceed with caution when increasing the complexity of models by adding new details, but, with appropriate care, more detailed models will make it possible to integrate more current knowledge in order better to understand, predict and ultimately manage the evolution of herbicide resistance. © 2014 Society of Chemical Industry.
Resumo:
West Africa is highly vulnerable to climate hazards and better quantification and understanding of the impact of climate change on crop yields are urgently needed. Here we provide an assessment of near-term climate change impacts on sorghum yields in West Africa and account for uncertainties both in future climate scenarios and in crop models. Towards this goal, we use simulations of nine bias-corrected CMIP5 climate models and two crop models (SARRA-H and APSIM) to evaluate the robustness of projected crop yield impacts in this area. In broad agreement with the full CMIP5 ensemble, our subset of bias-corrected climate models projects a mean warming of +2.8 °C in the decades of 2031–2060 compared to a baseline of 1961–1990 and a robust change in rainfall in West Africa with less rain in the Western part of the Sahel (Senegal, South-West Mali) and more rain in Central Sahel (Burkina Faso, South-West Niger). Projected rainfall deficits are concentrated in early monsoon season in the Western part of the Sahel while positive rainfall changes are found in late monsoon season all over the Sahel, suggesting a shift in the seasonality of the monsoon. In response to such climate change, but without accounting for direct crop responses to CO2, mean crop yield decreases by about 16–20% and year-to-year variability increases in the Western part of the Sahel, while the eastern domain sees much milder impacts. Such differences in climate and impacts projections between the Western and Eastern parts of the Sahel are highly consistent across the climate and crop models used in this study. We investigate the robustness of impacts for different choices of cultivars, nutrient treatments, and crop responses to CO2. Adverse impacts on mean yield and yield variability are lowest for modern cultivars, as their short and nearly fixed growth cycle appears to be more resilient to the seasonality shift of the monsoon, thus suggesting shorter season varieties could be considered a potential adaptation to ongoing climate changes. Easing nitrogen stress via increasing fertilizer inputs would increase absolute yields, but also make the crops more responsive to climate stresses, thus enhancing the negative impacts of climate change in a relative sense. Finally, CO2 fertilization would significantly offset the negative climate
Resumo:
Prickly acacia, Vachellia nilotica subsp. indica (syn. Acacia nilotica subsp. indica) (Fabaceae), a major weed in the natural grasslands of western Queensland, has been a target of biological control since the 1980s with limited success to date. Surveys in India, based on genetic and climate matching, identified five insects and two rust pathogens as potential agents. Host-specificity tests were conducted for the insects in India and under quarantine conditions in Australia, and for the rust pathogens under quarantine conditions at CABI in the UK. In no-choice tests, the brown leaf-webber, Phycita sp. A, (Lepidoptera: Pyralidae) completed development on 17 non-target plant species. Though the moth showed a clear preference for prickly acacia in oviposition choice trials screening of additional test-plant species was terminated in view of the potential non-target risk. The scale insect Anomalococcus indicus (Hemiptera: Lecanodiaspididae) developed into mature gravid females on 13 out of 58 non-target plant species tested. In the majority of cases very few female scales matured but development was comparable to that on prickly acacia on four of the non-target species. In multiple choice tests, the scale insect showed a significant preference for the target weed over non-target species tested. In a paired-choice trial under field conditions in India, crawler establishment occurred only on prickly acacia and not on the non-target species tested. Further choice trials are to be conducted under natural field conditions in India. A colony of the green leaf-webber Phycita sp. B has been established in quarantine facilities in Australia and host-specificity testing has commenced. The gall-rust Ravenelia acaciae-arabicae and the leaf-rust Ravenelia evansii (Puccineales: Raveneliaceae) both infected and produced viable urediniospores on Vachellia sutherlandii (Fabaceae), a non-target Australian native plant species. Hence, no further testing with the two rust species was pursued. Inoculation trials using the gall mite Aceria liopeltus (Acari: Eriophyidae) from V. nilotica subsp. kraussiana in South Africa resulted in no gall induction on V. nilotica subsp. indica. Future research will focus on the leaf-weevil Dereodus denticollis (Coleoptera: Curculionidae) and the leaf-beetle Pachnephorus sp. (Coleoptera: Chrysomelidae) under quarantine conditions in Australia. Native range surveys for additional potential biological control agents will also be pursued in northern and western Africa.
Resumo:
An important focus of biosecurity is anticipating future risks, but time lags between introduction, naturalisation, and (ultimately) impact mean that future risks can be strongly influenced by history. We conduct a comprehensive historical analysis of tropical grasses (n = 155) that have naturalised in Australia since European settlement (1788) to determine what factors shaped historical patterns of naturalisation and future risks, including for the 21 species that cause serious negative impacts. Most naturalised species were from the Old World (78 %), were introduced for use in pasture (64.5 %), were first recorded prior to 1940 (84.5 %) and naturalised before 1980 (90.3 %). Patterns for high-impact species were similar, with all being first recorded in Australia by 1940, and only seven naturalised since then-five intentionally introduced as pasture species. Counter to expectations, we found no evidence for increased naturalisation with increasing trade, including for species introduced unintentionally for which the link was expected to be strongest. New pathways have not emerged since the 1930s despite substantial shifts in trading patterns. Furthermore, introduction and naturalisation rates are now at or approaching historically low levels. Three reasons were identified: (1) the often long lag phase between introduction and reported naturalisation means naturalisation rates reflect historical trends in introduction rates; (2) important introduction pathways are not directly related to trade volume and globalisation; and (3) that species pools may become depleted. The last of these appears to be the case for the most important pathway for tropical grasses, i.e. the intentional introduction of useful pasture species. Assuming that new pathways don't arise that might result in increased naturalisation rates, and that current at-border biosecurity practices remain in place, we conclude that most future high-impact tropical grass species are already present in Australia. Our results highlight the need to continually test underlying assumptions regarding future naturalisation rates of high-impact invasive species, as conclusions have important implications for how best to manage future biosecurity risks.
Resumo:
Modeling the distributions of species, especially of invasive species in non-native ranges, involves multiple challenges. Here, we developed some novel approaches to species distribution modeling aimed at reducing the influences of such challenges and improving the realism of projections. We estimated species-environment relationships with four modeling methods run with multiple scenarios of (1) sources of occurrences and geographically isolated background ranges for absences, (2) approaches to drawing background (absence) points, and (3) alternate sets of predictor variables. We further tested various quantitative metrics of model evaluation against biological insight. Model projections were very sensitive to the choice of training dataset. Model accuracy was much improved by using a global dataset for model training, rather than restricting data input to the species’ native range. AUC score was a poor metric for model evaluation and, if used alone, was not a useful criterion for assessing model performance. Projections away from the sampled space (i.e. into areas of potential future invasion) were very different depending on the modeling methods used, raising questions about the reliability of ensemble projections. Generalized linear models gave very unrealistic projections far away from the training region. Models that efficiently fit the dominant pattern, but exclude highly local patterns in the dataset and capture interactions as they appear in data (e.g. boosted regression trees), improved generalization of the models. Biological knowledge of the species and its distribution was important in refining choices about the best set of projections. A post-hoc test conducted on a new Partenium dataset from Nepal validated excellent predictive performance of our “best” model. We showed that vast stretches of currently uninvaded geographic areas on multiple continents harbor highly suitable habitats for Parthenium hysterophorus L. (Asteraceae; parthenium). However, discrepancies between model predictions and parthenium invasion in Australia indicate successful management for this globally significant weed. This article is protected by copyright. All rights reserved.