3 resultados para fumigant resistance
em eResearch Archive - Queensland Department of Agriculture
Resumo:
In response to numerous reports of failures to control insect pests of stored products with phosphine in Vietnam, a national survey for resistance to this key fumigant was undertaken in 2009–2011. Data from a more limited survey undertaken by the authors in 2002 in northern Vietnam are also presented. Samples collected in the 2002 survey (Sitophilus oryzae, n=8; Tribolium castaneum, n=8) were tested using a full dose- response assay, while for the 2009–11 survey, F1 generations were tested for resistance with two discriminating dosages of phosphine to detect frequency of weak and strong resistance phenotypes. Compared with a susceptible reference strain, in 2002, resistance to phosphine was indicated in six T. castaneum samples but only two of S. oryzae. Resistance factor, however, did not exceed 2.8-fold in T. castaneum and 1.7 in S. oryzae indicating relatively low frequency and weak expression of resistance. In 2009–11 survey, 176 samples were collected from a range of food and feed storages along the supply chain and from all major regions of Vietnam (125 sites). Rhyzopertha dominica and S. oryzae were the most common species found infesting stored commodities. Resistance was detected at high frequency in all the species. Weak and strong resistance phenotype frequencies were, respectively: Cryptolestes ferrugineus (37 and 58%, n=19), R. dominica (1.5 and 97%, n=65), S. oryzae (34 and 59%, n=82) and T. castaneum (70 and 30%, n=10). Strong resistance phenotype was detected in all the major regions and all parts of the supply chain but frequency was the highest in central storages and animal feed establishments. The increase in frequency and strength of resistance to phosphine in the eight years between the two surveys has been rapid and dramatic. The survey demonstrates the threat of resistance to grain protection in Vietnam and highlights the need for training of fumigators, and the development and adoption of phosphine resistance management tactics nationally.
Resumo:
In Australia, along with many other parts of the world, fumigation with phosphine is a vital component in controlling stored grain insect pests. However, resistance is a factor that may limit the continued efficacy of this fumigant. While strong resistance to phosphine has been identified and characterised, very little information is available on the causes of its development and spread. Data obtained from a unique national resistance monitoring and management program were analysed, using Bayesian hurdle modelling, to determine which factors may be responsible. Fumigation in unsealed storages, combined with a high frequency of weak resistance, were found to be the main criteria that led to the development of strong resistance in Sitophilus oryzae. Independent development, rather than gene flow via migration, appears to be primarily responsible for the geographic incidence of strong resistance to phosphine in S. oryzae. This information can now be utilised to direct resources and education into those areas at high risk and to refine phosphine resistance management strategies.
Resumo:
Phosphine resistance in Tribolium castaneum Herbst (Coleoptera: Tenebrionidae) has evolved through changes to enzymes involved in basic metabolic pathways. These changes impose metabolic stress and could affect energy-demanding behaviours. We therefore tested whether phosphine resistance alleles impact the movement of these insects in their quest for new resources. We measured walking and flight parameters of four T. castaneum genotypes: (1) a field-derived population, (2) a laboratory cultured, phosphine-susceptible reference strain, (3) a laboratory cultured, phosphine-resistant reference strain, and (4) a resistant introgressed strain that is almost identical genetically to the susceptible population. The temporal pattern of flight was identical across all populations, but resistant beetles took flight significantly less, walked more slowly, and located resources less successfully than did susceptible beetles. Also, the field-derived beetles (proved not to be carrying resistance genes) walked significantly faster and more directly towards food resources, and had a higher propensity for flight when compared to the susceptible laboratory beetles. These negative effects suggest survival of beetles with the resistance alleles will be compromised should they leave phosphine application sites. The field for selection therefore extends beyond the site at which phosphine fumigant imposed its effect, and other mutations are also likely to be affected in this way.