7 resultados para forestry policies
em eResearch Archive - Queensland Department of Agriculture
Resumo:
The article discusses a new decision support process for forestry pest management. Over the past few years, DSS have been introduced for forestry pest management, providing forest growers with advice in areas such as selecting the most suitable pesticide and relevant treatment. Most of the initiatives process knowledge from various domains for providing support for specific decision making problems. However, very few studies have identified the requirements of developing a combined process model in which all relevant practitioners can contribute and share knowledge for effective decision making; such an approach would need to include the decision makers’ perspective along with other relevant attributes such as the problem context and relevant policies. We outline a decision support process for forestry pest management, based on the design science research paradigm, in which a focus group technique has application to acquire both expert and practical knowledge in order to construct the DSS solution.
Resumo:
Molecular marker development for tropical fruit and forestry species.
Resumo:
Resolving nutritional impediments to expansion and growth of teak plantations in Queensland.
Resumo:
Southern Hemisphere plantation forestry has grown substantially over the past few decades and will play an increasing role in fibre production and carbon sequestration in future. The sustainability of these plantations is, however, increasingly under pressure from introduced pests. This pressure requires an urgent and matching increase in the speed and efficiency at which tools are developed to monitor and control these pests. To consider the potential role of semiochemicals to address the need for more efficient pest control in Southern Hemisphere plantations, particularly by drawing from research in other parts of the world. Semiochemical research in forestry has grown exponentially over the last 40 years but has been almost exclusively focussed on Northern Hemisphere forests. In these forests, semiochemicals have played an important role to enhance the efficiency of integrated pest management programmes. An analysis of semiochemical research from 1970 to 2010 showed a rapid increase over time. It also indicated that pheromones have been the most extensively studied type of semiochemical in forestry, contributing to 92% of the semiochemical literature over this period, compared with research on plant kairomones. This research has led to numerous applications in detection of new invasions, monitoring population levels and spread, in addition to controlling pests by mass trapping or disrupting of aggregation and mating signals. The value of semiochemicals as an environmentally benign and efficient approach to managing forest plantation pests in the Southern Hemisphere seems obvious. There is, however, a lack of research capacity and focus to optimally capture this opportunity. Given the pressure from increasing numbers of pests and reduced opportunities to use pesticides, there is some urgency to develop semiochemical research capacity.
Resumo:
The layout of this second edition follows that of the first, though the content has been substantially rewritten to reflect 10 years of research and development, as well as the emergence of new pest species. Chapter 1 presents an overview, from a somewhat entomological perspective, of tropical forestry in its many guises. Chapters 2, 3 and 4 then discuss the 'pure' biology and ecology of tropical insects and their co-evolved relationships with the trees and forests in which they live. Chapter 5 is necessarily the largest chapter in the book, looking in detail at a selection of major pest species from all over the tropical world. Chapters 6, 7, 8 and 9 then discuss the theory and practice of insect pest management, starting at the fundamental planning stage, before any seeds hit the soil. Nursery management and stand management were considered in Chapters 7 and 8. Chapter 9 covers the topics of forest health surveillance, quarantine and forest invasive species, topics which again have significance at all stages of forestry but for convenience are presented after nursery and forest management. This, in fact, we attempt to do in the final chapter, Chapter 10, which combines most of the previous nine chapters in examples illustrating the concept of integrated pest management. ©CABI Publishing CABI Publishing
Resumo:
Corymbia F1 hybrids have high potential for plantation forestry; however, little is known of their reproductive biology and potential for genetic pollution of native Corymbia populations. This study aims to quantify the influence of reproductive isolating barriers on the success of novel reciprocal and advanced generation Corymbia hybrids. Two maternal taxa, Corymbia citriodora subsp. citriodora and Corymbia torelliana, were pollinated using five paternal taxa, C. citriodora subsp. citriodora, C. torelliana, one C. torelliana x C. citriodora subsp. citriodora hybrid and two C. torelliana x C. citriodora subsp. variegata hybrids. Pollen tube, embryo and seed development were assessed. Reciprocal hybridisation between C. citriodora subsp. citriodora and C. torelliana was successful. Advanced generation hybrids were also created when C. citriodora subsp. citriodora or C. torelliana females were backcrossed with F1 hybrid taxa. Prezygotic reproductive isolation was identified via reduced pollen tube numbers in the style and reduced numbers of ovules penetrated by pollen tubes. Reproductive isolation was weakest within the C. citriodora subsp. citriodora maternal taxon, with two hybrid backcrosses producing equivalent capsule and seed yields to the intraspecific cross. High hybridising potential was identified between all Corymbia species and F1 taxa studied. This provides opportunities for advanced generation hybrid breeding, allowing desirable traits to be amplified. It also indicates risks of gene flow between plantation and native Corymbia populations.