1 resultado para fimbria

em eResearch Archive - Queensland Department of Agriculture


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Haemophilus parasuis is the causative agent of Glässer's disease. Up to now 15 serovars of H. parasuis have been identified, with significant differences existing in virulence between serovars. In this study, suppression subtractive hybridization (SSH) was used to identify the genetic difference between Nagasaki (H. parasuis serovar 5 reference strain, highly virulent) and SW114 (H. parasuis serovar 3 reference strain, non-virulent). A total of 191 clones were obtained from the SSH library. Using dot hybridization and PCR, 15 clones were identified containing fragments that were present in the Nagasaki genome while absent in the SW114 genome. Among these 15 fragments, three fragments (ssh1, ssh13, ssh15) encode cell surface-associated components; three fragments (ssh2, ssh5, ssh9) are associated with metabolism and stress response; one fragment (ssh8) is involved in assembly of fimbria and one fragment (ssh6) is a phage phi-105 ORF25-like protein. The remaining seven fragments are hypothetical proteins or unknown. Based on PCR analysis of the 15 serovar reference strains, eight fragments (ssh1, ssh2, ssh3, ssh6, ssh8, ssh10, ssh11 and ssh12) were found in three to five of most virulent serovars (1, 5, 10, 12, 13 and 14), zero to two in three moderately virulent serovars (2, 4 and 15), but absent in the low virulent serovar (8) and non-virulent serovars (3, 6, 7, 9 and 11). In vivo transcription fragments ssh1, ssh2, ssh8 and ssh12 were identified in total RNA samples extracted from experimental infected pig lung by RT-PCR. This study has provided some evidence of genetic differences between H. parasuis strains of different virulence.