23 resultados para field studies
em eResearch Archive - Queensland Department of Agriculture
Resumo:
Whether or not termites initiate damage to timber via the end grain may determine the need for spot-treating the exposed untreated cut ends of envelope-treated softwood framing material. Australian Coptotermes acinaciformis (Froggatt) were field-tested for their ability to initiate feeding via the end grain of timber (35 × 90 mm) treated with a repellent Tanalith® T envelope. Specimens of commercial radiata pine Pinus radiata D.Don framing timber (untreated) and slash pine Pinus elliottii Englem. (untreated and envelope-treated) were partially clad in fine stainless steel mesh. Clad and unclad specimens were exposed to C. acinaciformis near Townsville, North Queensland, Australia, for four months. Results showed that this species of termite can indeed damage timber via the end grain, including exposed untreated cut ends of envelope-treated material as demonstrated earlier for different populations of C. acinaciformis. Differences between the test conditions in field trials carried out at different times (where C. acinaciformis either did or did not damage timber via the end grain) are discussed. Clearly, outcomes from field studies with preservative-treated materials are dependent upon experimental conditions. Notably, the amount of bait wood (highly termite-susceptible timber substrate) offered in a given method can strongly influence the termite response. Further investigation is required to standardise this aspect of conditions in protocols for the assessment of wood preservatives.
Resumo:
BACKGROUND: Field studies of diuron and its metabolites 3-(3,4-dichlorophenyl)-1-methylurea (DCPMU), 3,4-dichlorophenylurea (DCPU) and 3,4-dichloroaniline (DCA) were conducted in a farm soil and in stream sediments in coastal Queensland, Australia. RESULTS: During a 38 week period after a 1.6 kg ha^-1 diuron application, 70-100% of detected compounds were within 0-15 cm of the farm soil, and 3-10% reached the 30-45 cm depth. First-order t1/2 degradation averaged 49 ± 0.9 days for the 0-15, 0-30 and 0-45 cm soil depths. Farm runoff was collected in the first 13-50 min of episodes lasting 55-90 min. Average concentrations of diuron, DCPU and DCPMU in runoff were 93, 30 and 83-825 µg L^-1 respectively. Their total loading in all runoff was >0.6% of applied diuron. Diuron and DCPMU concentrations in stream sediments were between 3-22 and 4-31 µg kg^-1 soil respectively. The DCPMU/diuron sediment ratio was >1. CONCLUSION: Retention of diuron and its metabolites in farm topsoil indicated their negligible potential for groundwater contamination. Minimal amounts of diuron and DCMPU escaped in farm runoff. This may entail a significant loading into the wider environment at annual amounts of application. The concentrations and ratio of diuron and DCPMU in stream sediments indicated that they had prolonged residence times and potential for accumulation in sediments. The higher ecotoxicity of DCPMU compared with diuron and the combined presence of both compounds in stream sediments suggest that together they would have a greater impact on sensitive aquatic species than as currently apportioned by assessments that are based upon diuron alone.
Resumo:
Negative potassium (K) balances in all broadacre grain cropping systems in northern Australia are resulting in a decline in the plant-available reserves of K and necessitating a closer examination of strategies to detect and respond to developing K deficiency in clay soils. Grain growers on the Red Ferrosol soils have increasingly encountered K deficiency over the last 10 years due to lower available K reserves in these soils in their native condition. However, the problem is now increasingly evident on the medium-heavy clay soils (Black and Grey Vertosols) and is made more complicated by the widespread adoption of direct drill cropping systems and the resulting strong strati. cation of available K reserves in the top 0.05-0.1 m of the soil pro. le. This paper reports glasshouse studies examining the fate of applied K fertiliser in key cropping soils of the inland Burnett region of south-east Queensland, and uses the resultant understanding of K dynamics to interpret results of field trials assessing the effectiveness of K application strategies in terms of K availability to crop plants. At similar concentrations of exchangeable K (K-exch), soil solution K concentrations and activity of K in the soil solution (AR(K)) varied by 6-7-fold between soil types. When K-exch arising from different rates of fertiliser application was expressed as a percentage of the effective cation exchange capacity (i.e. K saturation), there was evidence of greater selective adsorption of K on the exchange complex of Red Ferrosols than Black and Grey Vertosols or Brown Dermosols. Both soil solution K and AR(K) were much less responsive to increasing K-exch in the Black Vertosols; this is indicative of these soils having a high K buffer capacity (KBC). These contrasting properties have implications for the rate of diffusive supply of K to plant roots and the likely impact of K application strategies (banding v. broadcast and incorporation) on plant K uptake. Field studies investigating K application strategies (banding v. broadcasting) and the interaction with the degree of soil disturbance/mixing of different soil types are discussed in relation to K dynamics derived from glasshouse studies. Greater propensity to accumulate luxury K in crop biomass was observed in a Brown Ferrosol with a KBC lower than that of a Black Vertosol, consistent with more efficient diffusive supply to plant roots in the Ferrosol. This luxury K uptake, when combined with crops exhibiting low proportional removal of K in the harvested product (i.e. low K harvest index coarse grains and winter cereals) and residue retention, can lead to rapid re-development of stratified K profiles. There was clear evidence that some incorporation of K fertiliser into soil was required to facilitate root access and crop uptake, although there was no evidence of a need to incorporate K fertiliser any deeper than achieved by conventional disc tillage (i.e. 0.1-0.15 m). Recovery of fertiliser K applied in deep (0.25-0.3 m) bands in combination with N and P to facilitate root proliferation was quite poor in Red Ferrosols and Grey or Black Vertosols with moderate effective cation exchange capacity (ECEC, 25-35 cmol(+)/kg), was reasonable but not enough to overcome K deficiency in a Brown Dermosol (ECEC 11 cmol(+)/kg), but was quite good on a Black Vertosol (ECEC 50-60 cmol(+)/kg). Collectively, results suggest that frequent small applications of K fertiliser, preferably with some soil mixing, is an effective fertiliser application strategy on lighter clay soils with low KBC and an effective diffusive supply mechanism. Alternately, concentrated K bands and enhanced root proliferation around them may be a more effective strategy in Vertosol soils with high KBC and limited diffusive supply. Further studies to assess this hypothesis are needed.
Application of phytotoxicity data to a new Australian soil quality guideline framework for biosolids
Resumo:
To protect terrestrial ecosystems and humans from contaminants many countries and jurisdictions have developed soil quality guidelines (SQGs). This study proposes a new framework to derive SQGs and guidelines for amended soils and uses a case study based on phytotoxicity data of copper (Cu) and zinc (Zn) from field studies to illustrate how the framework could be applied. The proposed framework uses normalisation relationships to account for the effects of soil properties on toxicity data followed by a species sensitivity distribution (SSD) method to calculate a soil added contaminant limit (soil ACL) for a standard soil. The normalisation equations are then used to calculate soil ACLs for other soils. A soil amendment availability factor (SAAF) is then calculated as the toxicity and bioavailability of pure contaminants and contaminants in amendments can be different. The SAAF is used to modify soil ACLs to ACLs for amended soils. The framework was then used to calculate soil ACLs for copper (Cu) and zinc (Zn). For soils with pH of 4-8 and OC content of 1-6%, the ACLs range from 8 mg/kg to 970 mg/kg added Cu. The SAAF for Cu was pH dependant and varied from 1.44 at pH 4 to 2.15 at pH 8. For soils with pH of 4-8 and OC content of 1-6%, the ACLs for amended soils range from 11 mg/kg to 2080 mg/kg added Cu. For soils with pH of 4-8 and a CEC from 5-60, the ACLs for Zn ranged from 21 to 1470 mg/kg added Zn. A SAAF of one was used for Zn as it concentrations in plant tissue and soil to water partitioning showed no difference between biosolids and soluble Zn salt treatments, indicating that Zn from biosolids and Zn salts are equally bioavailable to plants.
Resumo:
We review key issues, available approaches and analyses to encourage and assist practitioners to develop sound plans to evaluate the effectiveness of weed biological control agents at various phases throughout a program. Assessing the effectiveness of prospective agents before release assists the selection process, while post-release evaluation aims to determine the extent that agents are alleviating the ecological, social and economic impacts of the weeds. Information gathered on weed impacts prior to the initiation of a biological control program is necessary to provide baseline data and devise performance targets against which the program can subsequently be evaluated. Detailed data on weed populations, associated plant communities and, in some instances ecosystem processes collected at representative sites in the introduced range several years before the release of agents can be compared with similar data collected later to assess agent effectiveness. Laboratory, glasshouse and field studies are typically used to assess agent effectiveness. While some approaches used for field studies may be influenced by confounding factors, manipulative experiments where agents are excluded (or included) using chemicals or cages are more robust but time-consuming and expensive to implement. Demographic modeling and benefit–cost analyses are increasingly being used to complement other studies. There is an obvious need for more investment in long-term post-release evaluation of agent effectiveness to rigorously document outcomes of biological control programs.
Resumo:
Open-pollination: originated as a chance seedling from Z44 (maternal clonal parent), obtained from Beltsville MD in 1981, with an unknown pollen source from a zoysia grass germplasm field nursery at the Texas Agricultural Experiment Station in Dallas. ‘Palisades’ was selected over the parent Z44 on the basis of its lower tendency to produce thatch, its excellent lateral growth habit and its superior mowing qualities. ‘Palisades’ has been vegetatively propagated, and is uniform in growth expression. No seedling establishment from ‘Palisades’ has been noticed in either greenhouse or field studies. Selection criteria: rapid regrowth and spread by, and/or from, stolons and rhizomes; turf colour and density; tolerance to low mowing; winter hardiness; shade tolerance; low water use requirements. Propagation: vegetative. Breeder: Milton C. Engelke, Dallas, USA. PBR Certificate Number 2594, Application Number 2001/199, granted 26 October 2004.
Resumo:
Field studies were conducted at two locations in southern Queensland, Australia during the 2003-2004 and 2004-2005 growing seasons to determine the differential competitiveness of sorghum (Sorghum bicolor L. Moench) cultivars and crop densities against weeds and the sorghum yield loss due to weeds. Weed competition was investigated by growing sorghum in the presence or absence of a model grass weed, Japanese millet (Echinochloa esculenta). The correlation analyses showed that the early growth traits (height, shoot biomass, and daily growth rate of the shoot biomass) of sorghum adversely affected the height, biomass, and seed production of millet, as measured at maturity. "MR Goldrush" and "Bonus MR" were the most competitive cultivars, resulting in reduced weed biomass, weed density, and weed seed production. The density of sorghum also had a significant effect on the crop's ability to compete with millet. When compared to the density of 4.5 plants per m2, sorghum that was planted at 7.5 plants per m2 suppressed the density, biomass, and seed production of millet by 22%, 27% and 38%, respectively. Millet caused a significant yield loss in comparison with the weed-free plots. The combined weed-suppressive effects of the competitive cultivars, such as MR Goldrush, and high crop densities minimized the yield losses from the weeds. These results indicate that sorghum competition against grass weeds can be improved by choosing competitive cultivars and by using a high crop density of > 7.5 plants per m2. These non-chemical options should be included in an integrated weed management program for better weed management, particularly where the control options are limited by the evolution of herbicide resistance.
Resumo:
For approximately three decades the Australian broiler industry has relied heavily on the use of insecticides as its key tool for management of darkling beetle or lesser mealworm, Alphitobius diaperinus [Panzer] in broiler houses. The use of these chemicals over this period has been largely unchecked which has resulted in the development of strong insecticide resistance in many beetle populations from broiler farms. Although we are in a period now with an improved knowledge of managing resistance and the availability of new more effective insecticides that are currently marketed, the industry still requires more pest management options in order to inhibit development of resistance and reduce overall chemical use. In response to this need, ‘natural’ agents such as entomopathogenic nematodes and fungi were proposed as potential agents for managing darkling beetle populations in Australian broiler houses. Since 2007 laboratory and field studies have been undertaken to assess these agents. This report outlines these studies and discusses potential benefits to the Chicken Meat industry resulting from this research.
Resumo:
In 2001 a scoping study (phase I) was commissioned to determine and prioritise the weed issues of cropping systems with dryland cotton. The main findings were that the weed flora was diverse, cropping systems complex, and weeds had a major financial and economical impact. Phase II 'Best weed management strategies for dryland cropping systems with cotton' focused on improved management of the key weeds, bladder ketmia, sowthistle, fleabane, barnyard grass and liverseed grass.In Phase III 'Improving management of summer weeds in dryland cropping systems with cotton', more information on the seed-bank dynamics of key weeds was gained in six pot and field studies. The studies found that these characteristics differed between species, and even climate in the case of bladder ketmia. Species such as sowthistle, fleabane and barnyard grass emerged predominately from the surface soil. Sweet summer grass was also in this category but also had a significant proportion emerging from 5 cm depth. Bladder ketmia in central Queensland emerged mainly from the top 2 cm, whereas in southern Queensland it emerged mainly from 5 cm. Liverseed grass had its highest emergence from 5 cm below the surface. In all cases the persistence of seed increased with increasing soil depth. Fleabane was also found to be sensitive to soil type with no seedlings emerging in the self-mulching black vertisol soil. A strategic tillage trial showed that burial of fleabane seed, using a disc or chisel plough, to a depth of greater than 2 cm can significantly reduce subsequent fleabane emergence. In contrast, tillage increased barnyard grass emergence and tended to decrease persistence. This research showed that weed management plans can not be blanketed across all weed species, rather they need to be targeted for each main weed species.This project has also resulted in an increased knowledge of how to manage fleabane from the eight experiments; one in wheat, two in sorghum, one in cotton and three in fallow on double knock. For summer crops, the best option is to apply a highly effective fallow treatment prior to sowing the crops. For winter crops, the strategy is the integration of competitive crops, residual herbicide followed by a knockdown to control survivors. This project explored further the usefulness of the double knock tactic for weed control and preventing seed set. Two field and one pot experiments have shown that this tactic was highly effective for fleabane control. Paraquat products provided good control when followed by glyphosate. When 2, 4-D was added in a tank mix with glyphosate and followed by paraquat products, 99-100% control was achieved in all cases. The ideal follow-up times for paraquat products after glyphosate were 5-7 days. The preferred follow-up times for 2, 4-D after glyphosate were on the same day and one day later. The pot trial, which compared a population from a cropping field with previous glyphosate exposure and a population from a non-cropping area with no previous glyphosate herbicide exposure, showed that the pervious herbicide exposure affected the response of fleabane to herbicidal control measures. The web-based brochure on managing fleabane has been updated.Knowledge on management of summer grasses and safe use of residual herbicides was derived from eight field and pot experiments. Residual grass and broadleaf weed control was excellent with atrazine pre-plant and at-planting treatments, provided rain was received within a short interval after application. Highly effective fallow treatments (cultivation and double knock), not only gave excellent grass control in the fallow, also gave very good control in the following cotton. In the five re-cropping experiments, there were no adverse impacts on cotton from atrazine, metolachlor, metsulfuron and chlorsulfuron residues following use in previous sorghum, wheat and fallows. However, imazapic residues did reduce cotton growth.The development of strategies to reduce the heavy reliance on glyphosate in our cropping systems, and therefore minimise the risk of glyphosate resistance development, was a key factor in the research undertaken. This work included identifying suitable tactics for summer grass control, such as double knock with glyphosate followed by paraquat and tillage. Research on fleabane also concentrated on minimising emergence through tillage, and applying the double knock tactic. Our studies have shown that these strategies can be used to prevent seed set with the goal of driving down the seed bank. Utilisation of the strategies will also reduce the reliance on glyphosate, and therefore reduce the risk of glyphosate resistance developing in our cropping systems.Information from this research, including ecological and management data were collected from an additional eight paddock monitoring sites, was also incorporated into the Weeds CRC seed bank model "Weed Seed Wizard", which will be able to predict the impact of different management options on weed populations in cotton and grain farming systems. Extensive communication activities were undertaken throughout this project to ensure adoption of the new strategies for improved weed management and reduced risk for glyphosate resistance.
Resumo:
Dairy farms located in the subtropical cereal belt of Australia rely on winter and summer cereal crops, rather than pastures, for their forage base. Crops are mostly established in tilled seedbeds and the system is vulnerable to fertility decline and water erosion, particularly over summer fallows. Field studies were conducted over 5 years on contrasting soil types, a Vertosol and Sodosol, in the 650-mm annual-rainfall zone to evaluate the benefits of a modified cropping program on forage productivity and the soil-resource base. Growing forage sorghum as a double-crop with oats increased total mean annual production over that of winter sole-crop systems by 40% and 100% on the Vertosol and Sodosol sites respectively. However, mean annual winter crop yield was halved and overall forage quality was lower. Ninety per cent of the variation in winter crop yield was attributable to fallow and in-crop rainfall. Replacing forage sorghum with the annual legume lablab reduced fertiliser nitrogen (N) requirements and increased forage N concentration, but reduced overall annual yield. Compared with sole-cropped oats, double-cropping reduced the risk of erosion by extending the duration of soil water deficits and increasing the time ground was under plant cover. When grown as a sole-crop, well fertilised forage sorghum achieved a mean annual cumulative yield of 9.64 and 6.05 t DM/ha on the Vertosol and Sodosol, respectively, being about twice that of sole-cropped oats. Forage sorghum established using zero-tillage practices and fertilised at 175 kg N/ha. crop achieved a significantly higher yield and forage N concentration than did the industry-standard forage sorghum (conventional tillage and 55 kg N/ha. crop) on the Vertosol but not on the Sodosol. On the Vertosol, mean annual yield increased from 5.65 to 9.64 t DM/ha (33 kg DM/kg N fertiliser applied above the base rate); the difference in the response between the two sites was attributed to soil type and fertiliser history. Changing both tillage practices and N-fertiliser rate had no affect on fallow water-storage efficiency but did improve fallow ground cover. When forage sorghum, grown as a sole crop, was replaced with lablab in 3 of the 5 years, overall forage N concentration increased significantly, and on the Vertosol, yield and soil nitrate-N reserves also increased significantly relative to industry-standard sorghum. All forage systems maintained or increased the concentration of soil nitrate-N (0-1.2-m soil layer) over the course of the study. Relative to sole-crop oats, alternative forage systems were generally beneficial to the concentration of surface-soil (0-0.1 m) organic carbon and systems that included sorghum showed most promise for increasing soil organic carbon concentration. We conclude that an emphasis on double-or summer sole-cropping rather than winter sole-cropping will advantage both farm productivity and the soil-resource base.
Resumo:
Field studies were conducted over 5 years on two dairy farms in southern Queensland to evaluate the impacts of zero-tillage, nitrogen (N) fertiliser and legumes on a winter-dominant forage system based on raingrown oats. Oats was able to be successfully established using zero-tillage methods, with no yield penalties and potential benefits in stubble retention over the summer fallow. N fertiliser, applied at above industry-standard rates (140 vs. 55 kg/ha.crop) in the first 3 years, increased forage N concentration significantly and had residual effects on soil nitrate-N at both sites. At one site, crop yield was increased by 10 kg DM/ha. kg fertiliser N applied above industry-standard rates. The difference between sites in fertiliser response reflected contrasting soil and fertiliser history. There was no evidence that modifications to oats cropping practices (zero-tillage and increased N fertiliser) increased surface soil organic carbon (0-10 cm) in the time frame of the present study. When oats was substituted with annual legumes, there were benefits in improved forage N content of the oat crop immediately following, but legume yield was significantly inferior to oats. In contrast, the perennial legume Medicago sativa was competitive in biomass production and forage quality with oats at both sites and increased soil nitrate-N levels following termination. However, its contribution to winter forage was low at 10% of total production, compared with 40% for oats, and soil water reserves were significantly reduced at one site, which had an impact on the following oat production. The study demonstrated that productive grazed oat crops can be grown using zero tillage and that increased N fertiliser is more consistent in its effect on N concentration than on forage yield. A lucerne ley provides a strategy for raising soil nitrate-N concentration and increasing overall forage productivity, although winter forage production is reduced.
Resumo:
Plant records, derived largely from field studies in Thailand and Malaysia from 1986-94, are provided for 131 species of Southeast Asian Tephritidae.
Resumo:
Top-predators have been reported to have an important role in structuring food webs and maintaining ecological processes for the benefit of biodiversity at lower trophic levels. This is thought to be achieved through their suppressive effects on sympatric mesopredators and prey. Great scientific and public interest surrounds the potential use of top-predators as biodiversity conservation tools, and it can often be difficult to separate what we think we know and what we really know about their ecological utility. Not all the claims made about the ecological roles of top-predators can be substantiated by current evidence. We review the methodology underpinning empirical data on the ecological roles of Australian dingoes (Canis lupus dingo and hybrids) to provide a comprehensive and objective benchmark for knowledge of the ecological roles of Australia's largest terrestrial predator. From a wide variety of methodological flaws, sampling bias, and experimental design constraints inherent to 38 of the 40 field studies we assessed, we demonstrate that there is presently unreliable and inconclusive evidence for dingoes role as a biodiversity regulator. We also discuss the widespread (both taxonomically and geographically) and direct negative effects of dingoes to native fauna, and the few robust studies investigating their positive roles. In light of the highly variable and context-specific impacts of dingoes on faunal biodiversity and the inconclusive state of the literature, we strongly caution against the positive management of dingoes in the absence of a supporting evidence-base for such action.
Resumo:
One major benefit of land application of biosolids is to supply nitrogen (N) for agricultural crops, and understanding mineralisation processes is the key for better N-management strategies. Field studies were conducted to investigate the process of mineralisation of three biosolids products (aerobic, anaerobic, and thermally dried biosolids) incorporated into four different soils at rates of 7-90 wet t/ha in subtropical Queensland. Two of these studies also examined mineralisation rates of commonly used organic amendments (composts, manures, and sugarcane mill muds). Organic N in all biosolids products mineralised very rapidly under ambient conditions in subtropical Queensland, with rates much faster than from other common amendments. Biosolids mineralisation rates ranged from 30 to 80% of applied N during periods ranging from 3.5 to 18 months after biosolids application; these rates were much higher than those suggested in the biosolids land application guidelines established by the NSW EPA (15% for anaerobic and 25% for aerobic biosolids). There was no consistently significant difference in mineralisation rate between aerobic and anaerobic biosolids in our studies. When applied at similar rates of N addition, other organic amendments supplied much less N to the soil mineral N and plant N pools during the crop season. A significant proportion of the applied biosolids total N (up to 60%) was unaccounted for at the end of the observation period. High rates of N addition in calculated Nitrogen Limited Biosolids Application Rates (850-1250 kg N/ha) resulted in excessive accumulation of mineral N in the soil profile, which increases the environmental risks due to leaching, runoff, or gaseous N losses. Moreover, the rapid mineralisation of the biosolids organic N in these subtropical environments suggests that biosolids should be applied at lower rates than in temperate areas, and that care must be taken with the timing to maximise plant uptake and minimise possible leaching, runoff, or denitrification losses of mineralised N.
Resumo:
Bait containing sodium fluoroacetate (1080) is widely used for the routine control of feral pigs in Australia. In Queensland, meat baits are popular in western and northern pastoral areas where they are readily accepted by feral pigs and can be distributed aerially. Field studies have indicated some levels of interference and consumption of baits by nontarget species and, based on toxicity data and the 1080 content of baits, many nontarget species (particularly birds and varanids) are potentially at risk through primary poisoning. While occasional deaths of species have been recorded, it remains unclear whether the level of mortality is sufficient to threaten the viability or ecological function of species. A series of field trials at Culgoa National Park in south-western Queensland was conducted to determine the effect of broadscale aerial baiting (1.7 baits per km2) on the density of nontarget avian species that may consume baits. Counts of susceptible bird species were conducted prior to and following aerial baiting, and on three nearby unbaited properties, in May and November 2011, and May 2012. A sample of baits was monitored with remote cameras in the November 2011 and May 2012 trials. Over the three baiting campaigns, there was no evidence of a population-level decline among the seven avian nontarget species that were monitored. Thirty per cent and 15% of baits monitored by remote cameras in the November 2011 and May 2012 trials were sampled by birds, varanids or other reptiles. These results support the continued use of 1080 meat baits for feral pig management in western Queensland and similar environs.