89 resultados para feline virus
em eResearch Archive - Queensland Department of Agriculture
Resumo:
Veterinarians have few tools to predict the rate of disease progression in FIV-infected cats. In contrast, in HIV infection, plasma viral RNA load and acute phase protein concentrations are commonly used as predictors of disease progression. This study evaluated these predictors in cats naturally infected with FIV. In older cats (>5 years), log10 FIV RNA load was higher in the terminal stages of disease compared to the asymptomatic stage. There was a significant association between log10 FIV RNA load and both log10 serum amyloid A concentration and age in unwell FIV-infected cats. This study suggests that viral RNA load and serum amyloid A warrant further investigation as predictors of disease status and prognosis in FIV-infected cats.
Resumo:
Abacá mosaic virus (AbaMV) is related to members of the sugarcane mosaic virus subgroup of the genus Potyvirus. The ~2 kb 3′ terminal region of the viral genome was sequenced and, in all areas analysed, found to be most similar to Sugarcane mosaic virus (SCMV) and distinct from Johnsongrass mosaic virus (JGMV), Maize dwarf mosaic virus (MDMV) and Sorghum mosaic virus (SrMV). Cladograms of the 3′ terminal region of the NIb protein, the coat protein core and the 3′ untranslated region showed that AbaMV clustered with SCMV, which was a distinct clade and separate from JGMV, MDMV and SrMV. The N-terminal region of the AbaMV coat protein had a unique amino acid repeat motif different from those previously published for other strains of SCMV. The first experimental transmission of AbaMV from abacá (Musa textilis) to banana (Musa sp.), using the aphid vectors Rhopalosiphum maidis and Aphis gossypii, is reported. Polyclonal antisera for the detection of AbaMV in western blot assays and ELISA were prepared from recombinant coat protein expressed in E. coli. A reverse transcriptase PCR diagnostic assay, with microtitre plate colourimetric detection, was developed to discriminate between AbaMV and Banana bract mosaic virus, another Musa-infecting potyvirus. Sequence data, host reactions and serological relationships indicate that AbaMV should be considered a distinct strain of SCMV, and the strain designation SCMV-Ab is suggested.
Resumo:
Tomato spotted wilt virus (genus Tospovirus) is recorded on chickpea (Cicer arietinum) in Australia for the first time. It caused shoot tip symptoms of wilting, necrosis, bunching and chlorosis, followed by premature death of plants.
Resumo:
The papaya strain of Papaya ringspot virus (PRSV-P), the cause of papaya ringspot disease, was confirmed in French Polynesia and the Cook Islands by double antibody sandwich enzyme linked immunosorbent assay (DAS-ELISA). In French Polynesia, the virus has probably been on the islands of Tahiti and Moorea for several years, but appears not to have spread to eight other islands. In contrast, PRSV-P has only recently appeared in the Cook Islands and is now the subject of an eradication campaign.
Resumo:
The complete nucleocapsid (N) genes of eight Australian isolates of Lettuce necrotic yellows virus (LNYV) were amplified by reverse transcription PCR, cloned and sequenced. Phylogenetic analyses of these sequences revealed two distinct subgroups of LNYV isolates. Nucleotide sequences within each subgroup were more than 96% identical but heterogeneity between groups was about 20% at the nucleotide sequence level. However, less than 4% heterogeneity was noted at the amino acid level, indicating mostly third nucleotide position changes and a strong conservation for N protein function. There was no obvious geographical or temporal separation of the subgroups in Australia.
Resumo:
The potential for large-scale use of a sensitive real time reverse transcription polymerase chain reaction (RT-PCR) assay was evaluated for the detection of Tomato spotted wilt virus (TSWV) in single and bulked leaf samples by comparing its sensitivity with that of DAS-ELISA. Using total RNA extracted with RNeasy® or leaf soak methods, real time RT-PCR detected TSWV in all infected samples collected from 16 horticultural crop species (including flowers, herbs and vegetables), two arable crop species, and four weed species by both assays. In samples in which DAS-ELISA had previously detected TSWV, real time RT-PCR was effective at detecting it in leaf tissues of all 22 plant species tested at a wide range of concentrations. Bulk samples required more robust and extensive extraction methods with real time RT-PCR, but it generally detected one infected sample in 1000 uninfected ones. By contrast, ELISA was less sensitive when used to test bulked samples, once detecting up to 1 infected in 800 samples with pepper but never detecting more than 1 infected in 200 samples in tomato and lettuce. It was also less reliable than real time RT-PCR when used to test samples from parts of the leaf where the virus concentration was low. The genetic variability among Australian isolates of TSWV was small. Direct sequencing of a 587 bp region of the nucleoprotein gene (S RNA) of 29 isolates from diverse crops and geographical locations yielded a maximum of only 4.3% nucleotide sequence difference. Phylogenetic analysis revealed no obvious groupings of isolates according to geographic origin or host species. TSWV isolates, that break TSWV resistance genes in tomato or pepper did not differ significantly in the N gene region studied, indicating that a different region of the virus genome is responsible for this trait.
Resumo:
Banana bunchy top virus (BBTV) was readily transmitted through tissue culture in banana (Mum sp.) cv. Lady finger (AAB) and Cavendish cv. Williams (AAA). Lines derived from infected and healthy field plants had similar in vitro multiplication rates. BBTV infected in vitro cultures displayed symptoms of stunting, leaf curling, chlorotic and green flecks, and poor root growth. Symptoms became milder with time, and were often difficult to discern in older, rapidly multiplying cultures. A triple antibody sandwich ELISA using polyclonal and monoclonal antibodies was very efficient for detecting BBTV in vitro. Symptomless, ELISA-negative plants arose in 10 out of 11 lines derived from BBTV-infected field plants and first appeared after 9 months continuous in vitro culture at a constant 28OC. Meristem tip culture or heat therapy was not used. These plants remained symptomless and ELISA-negative after planting out in the glasshouse (individual plants checked for up to 16 months). The implications of this inconsistent transmission of BBTV for germplasm indexing and exchange are discussed.
Resumo:
We have characterised six Australian Cucumber mosaic virus (CMV) strains belonging to different subgroups, determined by the sequence of their complete RNA 3 and by their host range and the symptoms they cause on species in the Solanaceae, Cucurbitaceae and on sweet corn. These data allowed classification of strains into the known three CMV subgroups and identification of plant species able to differentiate the Australian strains by symptoms and host range. Western Australian strains 237 and Twa and Queensland strains 207 and 242 are closely related members of CMV subgroup IA, which cause similar severe symptoms on Nicotiana species. Strains 207 and 237 (subgroup IA) were the only strains tested which systemically infected sweet corn. Strain 243 caused the most severe symptoms of all strains on Nicotiana species, tomato and capsicum and appears to be the first confirmed subgroup IB strain reported in Australia. Based on pair-wise distance analysis and phylogeny of RNA 3, as well as mild disease symptoms on Nicotiana species, CMV 241 was assigned to subgroup II, as the previously described Q-CMV and LY-CMV.
Resumo:
A panel of 19 monoclonal antibodies (mAbs) was used to study the immunological variability of Lettuce mosaic virus (LMV), a member of the genus Potyvirus, and to perform a first epitope characterization of this virus. Based on their specificity of recognition against a panel of 15 LMV isolates, the mAbs could be clustered in seven reactivity groups. Surface plasmon resonance analysis indicated the presence, on the LMV particles, of at least five independent recognition/binding regions, correlating with the seven mAbs reactivity groups. The results demonstrate that LMV shows significant serological variability and shed light on the LMV epitope structure. The various mAbs should prove a new and efficient tool for LMV diagnostic and field epidemiology studies.
Resumo:
We completed the genome sequence of Lettuce necrotic yellows virus (LNYV) by determining the nucleotide sequences of the 4a (putative phosphoprotein), 4b, M (matrix protein), G (glycoprotein) and L (polymerase) genes. The genome consists of 12,807 nucleotides and encodes six genes in the order 3′ leader-N-4a(P)-4b-M-G-L-5′ trailer. Sequences were derived from clones of a cDNA library from LNYV genomic RNA and from fragments amplified using reverse transcription-polymerase chain reaction. The 4a protein has a low isoelectric point characteristic for rhabdovirus phosphoproteins. The 4b protein has significant sequence similarities with the movement proteins of capillo- and trichoviruses and may be involved in cell-to-cell movement. The putative G protein sequence contains a predicted 25 amino acids signal peptide and endopeptidase cleavage site, three predicted glycosylation sites and a putative transmembrane domain. The deduced L protein sequence shows similarities with the L proteins of other plant rhabdoviruses and contains polymerase module motifs characteristic for RNA-dependent RNA polymerases of negative-strand RNA viruses. Phylogenetic analysis of this motif among rhabdoviruses placed LNYV in a group with other sequenced cytorhabdoviruses, most closely related to Strawberry crinkle virus.
Resumo:
Co-suppression of transgenes and their homologous viral sequences by RNA silencing is a powerful strategy for achieving high-level virus resistance in plants. This review provides a brief overview of RNA silencing mechanisms in plants and discusses important transgene construct design features underpinning successful RNA silencing-mediated transgenic virus control. Application of those strategies to protect horticultural and field crops from virus infection and results of field tests are also provided. The effectiveness and stability of RNA-mediated transgenic resistance are assessed taking into account effects of viral, plant and environmental factors.
Resumo:
A veterinarian became infected with Hendra virus (HeV) after managing a terminally ill horse and performing a limited autopsy with inadequate precautions. Although she was initially only mildly ill, serological tests suggested latent HeV infection. Nevertheless, she remains well 2 years after her initial illness. Recently emerged zoonotic viruses, such as HeV, necessitate appropriate working procedures and personal protective equipment in veterinary practice.
Resumo:
Two isolates of a novel babuvirus causing "bunchy top" symptoms were characterised, one from abaca (Musa textilis) from the Philippines and one from banana (Musa sp.) from Sarawak (Malaysia). The name abacá bunchy top virus (ABTV) is proposed. Both isolates have a genome of six circular DNA components, each ca. 1.0-1.1 kb, analogous to those of isolates of Banana bunchy top virus (BBTV). However, unlike BBTV, both ABTV isolates lack an internal ORF in DNA-R, and the ORF in DNA-U3 found in some BBTV isolates is also absent. In all phylogenetic analyses of nanovirid isolates, ABTV and BBTV fall in the same clade, but on separate branches. However, ABTV and BBTV isolates shared only 79-81% amino acid sequence identity for the putative coat protein and 54-76% overall nucleotide sequence identity across all components. Stem-loop and major common regions were present in ABTV, but there was less than 60% identity with the major common region of BBTV. ABTV and BBTV were also shown to be serologically distinct, with only two out of ten BBTV-specific monoclonal antibodies reacting with ABTV. The two ABTV isolates may represent distinct strains of the species as they are less closely related to each other than are isolates of the two geographic subgroups (Asian and South Pacific) of BBTV.
Resumo:
Rhabdoviruses are important pathogens of humans, livestock, and plants that are often vectored by insects. Rhabdovirus particles have a characteristic bullet shape with a lipid envelope and surface-exposed transmembrane glycoproteins. Sigma virus (SIGMAV) is a member of the Rhabdoviridae and is a naturally occurring disease agent of Drosophila melanogaster. The infection is maintained in Drosophila populations through vertical transmission via germ cells. We report here the nature of the Drosophila innate immune response to SIGMAV infection as revealed by quantitative reverse transcription-PCR analysis of differentially expressed genes identified by microarray analysis. We have also compared and contrasted the immune response of the host with respect to two nonenveloped viruses, Drosophila C virus (DCV) and Drosophila X virus (DXV). We determined that SIGMAV infection upregulates expression of the peptidoglycan receptor protein genes PGRP-SB1 and PGRP-SD and the antimicrobial peptide (AMP) genes Diptericin-A, Attacin-A, Attacin-B, Cecropin-A1, and Drosocin. SIGMAV infection did not induce PGRP-SA and the AMP genes Drosomycin-B, Metchnikowin, and Defensin that are upregulated in DCV and/or DXV infections. Expression levels of the Toll and Imd signaling cascade genes are not significantly altered by SIGMAV infection. These results highlight shared and unique aspects of the Drosophila immune response to the three viruses and may shed light on the nature of the interaction with the host and the evolution of these associations.