2 resultados para excitation spectra

em eResearch Archive - Queensland Department of Agriculture


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The study examined the potential of Near Infrared Reflectance (NIR) spectroscopy for field diagnosis of hybrids between Corymbia (formerly Eucalyptus) species. NIR profiles were generated by scanning foliage from a total of 383 hybrid and 533 parental seedlings grown in a common garden and partial least squares discriminant analysis was used to test three-way model power to assign individuals to their appropriate taxon; either a parental or F1 hybrid class. Using the optimised conditions, fresh foliage from eight-month-old seedlings and a handheld NIR instrument (950–1800 nm), the mean assignment rates for the three hybrid groups ranged from 76% to 90%. Hybrid-parent contrast of NIR spectra deviated more so than parent–parent contrast. The F1 taxon assignment rates were usually higher than those for parents at 100% and 72%, respectively. Hybrid resolution was even greater for 2nd generation backcross hybrids. Similar to studies of morphology, taxon assignments tended to be more accurate for hybrid groups in which the parental taxa were more divergent. The practical application of this technique for hybrid diagnosis of seedlings in the nursery will require careful attention to control environmental factors because seedling age and storage effects influenced the ability of NIR to identify hybrids. The technique may also necessitate the generation of comparable reference populations, although exclusions approaches to analysis may circumvent the need for reference populations. The application of NIR in field diagnosis will be further complicated by the need to generate global models across environments but such models have been obtained for reliable prediction of chemistries in other situations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent investigations into plant tissues have indicated that the free form of the natural polyphenolic antioxidant, ellagic acid (EA), is much more plentiful than first envisaged; consequently a re-assessment of solvent systems for the extraction of this water-insoluble form is needed. As EA solubility and its UV-Vis spectrum, commonly used for detection and quantification, are both governed by pH, an understanding of this dependence is vital if accurate EA measurements are to be achieved. After evaluating the pH effects on the solubility and UV-Vis spectra of commercial EA, an extraction protocol was devised that promoted similar pH conditions for both standard solutions and plant tissue extracts. The extraction so devised followed by HPLC with photodiode-array detection (DAD) provided a simple, sensitive and validated methodology that determined free EA in a variety of plant extracts. The use of 100 % methanol or a triethanolamine-based mixture as the standard dissolving solvents were the best choices, while these higher pH-generating solvents were more efficient in extracting EA from the plants tested with the final choice allied to the plants’ natural acidity. Two of the native Australian plants anise myrtle (Syzygium anisatum) and Kakadu plum (Terminalia ferdinandiana) exhibited high concentrations of free EA. Furthermore, the dual approach to measuring EA UV-Vis spectra made possible an assessment of the effect of acidified eluent on EA spectra when the DAD was employed.