5 resultados para ethyl cellulose
em eResearch Archive - Queensland Department of Agriculture
Resumo:
As part of preliminary work aimed at the development of a formulated diet for the mud crab, Scylla serrata, an experiment was conducted with juvenile mud crabs (95.65±2.17 g) to determine apparent digestibility coefficients (ADC) for cellulose, fish meal, shrimp meal, blood meal, soybean meal, wheat flour and cod liver oil. Apparent digestibility coefficients for dry matter (ADCdm), energy (ADCenergy) and protein (ADC protein) were in the ranges 70.0-95.7%, 77.4-97.1% and 57.7-97.9% respectively. Soybean meal had the highest ADCdm and wheat flour had the lowest value (P<0.05), while the ADCdm for fish meal, blood meal and shrimp meal were not different (P?0.05). Similarly, soybean meal had the same ADCenergy as that of fish meal, but higher than those of cod liver oil, blood meal and shrimp meal (P<0.05). Moreover, the ADC protein for blood meal or shrimp meal were not significantly different from fish meal (P?0.05); nevertheless, they were lower than that of soybean meal and higher than that of wheat flour (P<0.05). Of significant interest was the ADCdm (78.0%) and ADCenergy (77.4%) for cellulose, which indicates that plant-based nutrient sources may well be a useful component of formulated diets for mud crabs.
Resumo:
A bioassay technique was developed to test the efficacy of insecticides against potato moth (Phthorimaea operculella (Zeller)) on tomatoes. The technique tested efficacy against both larvae in mines and neonate larvae that had not yet penetrated the leaf, and explained the failure of some insecticides to control P. operculella infestations in commercial tomato crops. Neonate larvae placed on leaves of potted plants several days before treatment provided larvae for testing of insecticides against larvae in mines; other neonates were placed on leaves after treatment to test efficacy against larvae yet to penetrate the leaf. The plants were sprayed with the candidate insecticides, held for 5-7 days, and larval mortality assessed. Chlorfenapyr (100, 200 g a.i. ha-1) and abamectin (8.1 g a.i. ha-1) were effective against neonate larvae and larvae in mines. Sulprofos (720 g a.i. ha -1), methomyl (450 g a.i. ha-1) and spinosad (96 g a.i. ha-1) were effective against neonate larvae but not against larvae in mines. Methamidophos (1102 g a.i. ha-1), endosulfan (700 g a.i. ha-1) and Bacillus thuringiensis kurstaki (1000 g ha-1) had some effect against exposed larvae but little against larvae in mines. Thiodicarb (525 g a.i. ha-1), azinphos-ethyl (440 g a.i. ha -1), imidacloprid (59.5 g a.i. ha-1), hexaflumuron (50 g a.i. ha-1), methoxyfenozide (300 g a.i. ha-1) and tebufenozide (200 g a.i. ha-1) were ineffective. A field trial using chlorfenapyr (25, 50, 100, 150 and 200 g a.i. ha-1) and methamidophos (1102 g a.i. ha-1) validated the bioassay technique, with chlorfenapyr effective in reducing the numbers of larvae in mines in leaves.
Resumo:
Anthocyanins are located within the vacuole of plant cells, and are released following cell rupture during eating or processing at which time they first come into contact with the plant cell wall. The extent of anthocyanin-cell wall interaction was investigated by monitoring the rate of anthocyanin depletion in the presence of pure cellulose or cellulose-pectin composites as cell wall models. It was found that anthocyanins interact with both cellulose and pectin over a two-stage process with initially (mins-hours) 13 similar to 18% of anthocyanins binding to cellulose or cellulose/pectincomposites. With prolonged exposure (days-weeks), a gradual increase in anthocyanin binding occurs, possibly due to anthocyanins stacking on top of a base layer. Binding of acylated and non-acylated anthocyanins followed a similar pattern with slightly more (5-10%) binding of the acylated forms. Composites with the highest pectin content had the greatest anthocyanin binding suggesting the existence of both ionic interactions (with pectin) and hydrophobic interactions (with cellulose) of anthocyanin with plant cell walls.
Resumo:
Separately, polyphenols and plant cell walls (PCW) are important contributors to the health benefits associated with fruits and vegetables. However, interactions with PCW which occur either during food preparation or mastication may affect bioaccessibility and hence bioavailability of polyphenols. Binding interactions between anthocyanins, phenolic acids (PAs) and PCW components, were evaluated using both a bacterial cellulose-pectin model system and a black carrot puree system. The majority of available polyphenols bound to PCW material with 60-70% of available anthocyanins and PAs respectively binding to black carrot puree PCW matter. Once bound, release of polyphenols using acidified methanol is low with only similar to 20% of total anthocyanins to similar to 30% of PAs being released. Less than 2% of bound polyphenol was released after in vitro gastric and small intestinal (S.I.) digestion for both the model system and the black carrot puree PCW matter. Confocal laser scanning microscopy shows localised binding of anthocyanins to PCW. Very similar patterns of binding for anthocyanins and PAs suggest that PAs form complexes with anthocyanins and polysaccharides. Time dependent changes in extractability with acidified methanol but not the total bound fraction suggests that initial nonspecific deposition on cellulose surfaces is followed by rearrangement of the bound molecules. Minimal release of anthocyanins and PAs after simulated gastric and S.I. digestion indicates that polyphenols in fruits and vegetables which bind to the PCW will be transported to the colon where they would be expected to be released by the action of cell wall degrading bacteria.
Resumo:
Bacterial cellulose and cellulose-pectin composites were used as well-defined model plant cell wall (PCW) systems to study the interaction between phenolic acids (PA) derived from purple carrot juice concentrate (PCJC) and PCW components. Significant PA depletion from solution occurred, with pure cellulose initially (30 s-1 h) absorbing more than cellulose-pectin composites in the first hour (ca 20% cf 10-15%), but with all composites absorbing similar levels (ca 30%) after several days. Individual PAs bound to different relative extents with caffeic acid > chlorogenic acid > ferulic acid. Extrapolation of data for these model systems to carrot puree suggests that nutritionally-significant amounts of PAs could bind to cell walls, potentially restricting bioavailability in the small intestine and, as a consequence, delivering PAs to the large intestine for fermentation and metabolism by gut bacteria. (C) 2012 Elsevier Ltd. All rights reserved.