34 resultados para error-location number
em eResearch Archive - Queensland Department of Agriculture
Resumo:
The Queensland Great Barrier Reef line fishery in Australia is regulated via a range of input and output controls including minimum size limits, daily catch limits and commercial catch quotas. As a result of these measures a substantial proportion of the catch is released or discarded. The fate of these released fish is uncertain, but hook-related mortality can potentially be decreased by using hooks that reduce the rates of injury, bleeding and deep hooking. There is also the potential to reduce the capture of non-target species though gear selectivity. A total of 1053 individual fish representing five target species and three non-target species were caught using six hook types including three hook patterns (non-offset circle, J and offset circle), each in two sizes (small 4/0 or 5/0 and large 8/0). Catch rates for each of the hook patterns and sizes varied between species with no consistent results for target or non-target species. When data for all of the fish species were aggregated there was a trend for larger hooks, J hooks and offset circle hooks to cause a greater number of injuries. Using larger hooks was more likely to result in bleeding, although this trend was not statistically significant. Larger hooks were also more likely to foul-hook fish or hook fish in the eye. There was a reduction in the rates of injuries and bleeding for both target and non-target species when using the smaller hook sizes. For a number of species included in our study the incidence of deep hooking decreased when using non-offset circle hooks, however, these results were not consistent for all species. Our results highlight the variability in hook performance across a range of tropical demersal finfish species. The most obvious conservation benefits for both target and non-target species arise from using smaller sized hooks and non-offset circle hooks. Fishers should be encouraged to use these hook configurations to reduce the potential for post-release mortality of released fish.
Resumo:
Background: Understanding the long-distance movement of bats has direct relevance to studies of population dynamics, ecology, disease emergence, and conservation. Methodology/Principal Findings: We developed and trialed several collar and platform terminal transmitter (PTT) combinations on both free-living and captive fruit bats (Family Pteropodidae: Genus Pteropus). We examined transmitter weight, size, profile and comfort as key determinants of maximized transmitter activity. We then tested the importance of bat-related variables (species size/weight, roosting habitat and behavior) and environmental variables (day-length, rainfall pattern) in determining optimal collar/PTT configuration. We compared battery- and solar-powered PTT performance in various field situations, and found the latter more successful in maintaining voltage on species that roosted higher in the tree canopy, and at lower density, than those that roost more densely and lower in trees. Finally, we trialed transmitter accuracy, and found that actual distance errors and Argos location class error estimates were in broad agreement. Conclusions/Significance: We conclude that no single collar or transmitter design is optimal for all bat species, and that species size/weight, species ecology and study objectives are key design considerations. Our study provides a strategy for collar and platform choice that will be applicable to a larger number of bat species as transmitter size and weight continue to decrease in the future.
Resumo:
The Brix content of pineapple fruit can be non-invasively predicted from the second derivative of near infrared reflectance spectra. Correlations obtained using a NIRSystems 6500 spectrophotometer through multiple linear regression and modified partial least squares analyses using a post-dispersive configuration were comparable with that from a pre-dispersive configuration in terms of accuracy (e.g. coefficient of determination, R2, 0.73; standard error of cross validation, SECV, 1.01°Brix). The effective depth of sample assessed was slightly greater using the post-dispersive technique (about 20 mm for pineapple fruit), as expected in relation to the higher incident light intensity, relative to the pre-dispersive configuration. The effect of such environmental variables as temperature, humidity and external light, and instrumental variables such as the number of scans averaged to form a spectrum, were considered with respect to the accuracy and precision of the measurement of absorbance at 876 nm, as a key term in the calibration for Brix, and predicted Brix. The application of post-dispersive near infrared technology to in-line assessment of intact fruit in a packing shed environment is discussed.
Resumo:
The development of innovative methods of stock assessment is a priority for State and Commonwealth fisheries agencies. It is driven by the need to facilitate sustainable exploitation of naturally occurring fisheries resources for the current and future economic, social and environmental well being of Australia. This project was initiated in this context and took advantage of considerable recent achievements in genomics that are shaping our comprehension of the DNA of humans and animals. The basic idea behind this project was that genetic estimates of effective population size, which can be made from empirical measurements of genetic drift, were equivalent to estimates of the successful number of spawners that is an important parameter in process of fisheries stock assessment. The broad objectives of this study were to 1. Critically evaluate a variety of mathematical methods of calculating effective spawner numbers (Ne) by a. conducting comprehensive computer simulations, and by b. analysis of empirical data collected from the Moreton Bay population of tiger prawns (P. esculentus). 2. Lay the groundwork for the application of the technology in the northern prawn fishery (NPF). 3. Produce software for the calculation of Ne, and to make it widely available. The project pulled together a range of mathematical models for estimating current effective population size from diverse sources. Some of them had been recently implemented with the latest statistical methods (eg. Bayesian framework Berthier, Beaumont et al. 2002), while others had lower profiles (eg. Pudovkin, Zaykin et al. 1996; Rousset and Raymond 1995). Computer code and later software with a user-friendly interface (NeEstimator) was produced to implement the methods. This was used as a basis for simulation experiments to evaluate the performance of the methods with an individual-based model of a prawn population. Following the guidelines suggested by computer simulations, the tiger prawn population in Moreton Bay (south-east Queensland) was sampled for genetic analysis with eight microsatellite loci in three successive spring spawning seasons in 2001, 2002 and 2003. As predicted by the simulations, the estimates had non-infinite upper confidence limits, which is a major achievement for the application of the method to a naturally-occurring, short generation, highly fecund invertebrate species. The genetic estimate of the number of successful spawners was around 1000 individuals in two consecutive years. This contrasts with about 500,000 prawns participating in spawning. It is not possible to distinguish successful from non-successful spawners so we suggest a high level of protection for the entire spawning population. We interpret the difference in numbers between successful and non-successful spawners as a large variation in the number of offspring per family that survive – a large number of families have no surviving offspring, while a few have a large number. We explored various ways in which Ne can be useful in fisheries management. It can be a surrogate for spawning population size, assuming the ratio between Ne and spawning population size has been previously calculated for that species. Alternatively, it can be a surrogate for recruitment, again assuming that the ratio between Ne and recruitment has been previously determined. The number of species that can be analysed in this way, however, is likely to be small because of species-specific life history requirements that need to be satisfied for accuracy. The most universal approach would be to integrate Ne with spawning stock-recruitment models, so that these models are more accurate when applied to fisheries populations. A pathway to achieve this was established in this project, which we predict will significantly improve fisheries sustainability in the future. Regardless of the success of integrating Ne into spawning stock-recruitment models, Ne could be used as a fisheries monitoring tool. Declines in spawning stock size or increases in natural or harvest mortality would be reflected by a decline in Ne. This would be good for data-poor fisheries and provides fishery independent information, however, we suggest a species-by-species approach. Some species may be too numerous or experiencing too much migration for the method to work. During the project two important theoretical studies of the simultaneous estimation of effective population size and migration were published (Vitalis and Couvet 2001b; Wang and Whitlock 2003). These methods, combined with collection of preliminary genetic data from the tiger prawn population in southern Gulf of Carpentaria population and a computer simulation study that evaluated the effect of differing reproductive strategies on genetic estimates, suggest that this technology could make an important contribution to the stock assessment process in the northern prawn fishery (NPF). Advances in the genomics world are rapid and already a cheaper, more reliable substitute for microsatellite loci in this technology is available. Digital data from single nucleotide polymorphisms (SNPs) are likely to super cede ‘analogue’ microsatellite data, making it cheaper and easier to apply the method to species with large population sizes.
Resumo:
When investigating strategies for Helicoverpa armigera (Hubner) control, it is important to understand oviposition behaviour. Cotton (Gossypium hirsutum) was sown into standing wheat (Triticum astivum L.) stubble in a closed arena to investigate the effect of stubble on H. armigera moth behaviour and oviposition. Infrared cameras were used to track moths and determine whether stubble acted as a physical barrier or provided camouflage to cotton plants, thereby reducing oviposition. Searching activity was observed to peak shortly before dawn (03:00 and 04:00 h) and remained high until just after dawn (4 h window). Moths spent more time resting on cotton plants than spiralling above them, and the least time flying across the arena. While female moths spent more time searching for cotton plants growing in wheat stubble, the difference in oviposition was not significant. As similar numbers of eggs were laid on cotton plants with stubble (3.5/plant SE +/- 0.87) and without stubble (2.5/plant SE +/- 0.91), wheat stubble does not appear to provide camouflage to cotton plants. There was no significant difference in the location of eggs deposited on cotton plants with and without stubble, although more eggs were laid on the tops of cotton leaves in wheat stubble. As the spatial and temporal distribution of eggs laid on the cotton plant is a crucial component of population stability, eggs laid on the upper side of leaves on cotton plants may be more prone to fatalities caused by environmental factors such as wind and rain. Therefore, although stubble did not influence the number of eggs laid, it did affect their distribution on the plant, which may result in increased mortality of eggs on cotton plants sown into standing wheat stubble.
Resumo:
Volatile chemical compounds responsible for the aroma of wine are derived from a number of different biochemical and chemical pathways. These chemical compounds are formed during grape berry metabolism, crushing of the berries, fermentation processes (i.e. yeast and malolactic bacteria) and also from the ageing and storage of wine. Not surprisingly, there are a large number of chemical classes of compounds found in wine which are present at varying concentrations (ng L-1 to mg L-1), exhibit differing potencies, and have a broad range of volatilities and boiling points. The aim of this work was to investigate the potential use of near infrared (NIR) spectroscopy combined with chemometrics as a rapid and low-cost technique to measure volatile compounds in Riesling wines. Samples of commercial Riesling wine were analyzed using an NIR instrument and volatile compounds by gas chromatography (GC) coupled with selected ion monitoring mass spectrometry. Correlation between the NIR and GC data were developed using partial least-squares (PLS) regression with full cross validation (leave one out). Coefficients of determination in cross validation (R 2) and the standard error in cross validation (SECV) were 0.74 (SECV: 313.6 μg L−1) for esters, 0.90 (SECV: 20.9 μg L−1) for monoterpenes and 0.80 (SECV: 1658 ?g L-1) for short-chain fatty acids. This study has shown that volatile chemical compounds present in wine can be measured by NIR spectroscopy. Further development with larger data sets will be required to test the predictive ability of the NIR calibration models developed.
A method for mapping the distribution and density of rabbits and other vertebrate pests in Australia
Resumo:
The European wild rabbit has been considered Australia’s worst vertebrate pest and yet little effort appears to have gone into producing maps of rabbit distribution and density. Mapping the distribution and density of pests is an important step in effective management. A map is essential for estimating the extent of damage caused and for efficiently planning and monitoring the success of pest control operations. This paper describes the use of soil type and point data to prepare a map showing the distribution and density of rabbits in Australia. The potential for the method to be used for mapping other vertebrate pests is explored. The approach used to prepare the map is based on that used for rabbits in Queensland (Berman et al. 1998). An index of rabbit density was determined using the number of Spanish rabbit fleas released per square kilometre for each Soil Map Unit (Atlas of Australian Soils). Spanish rabbit fleas were released into active rabbit warrens at 1606 sites in the early 1990s as an additional vector for myxoma virus and the locations of the releases were recorded using a Global Positioning System (GPS). Releases were predominantly in arid areas but some fleas were released in south east Queensland and the New England Tablelands of New South Wales. The map produced appears to reflect well the distribution and density of rabbits, at least in the areas where Spanish fleas were released. Rabbit pellet counts conducted in 2007 at 54 sites across an area of south east South Australia, south eastern Queensland, and parts of New South Wales (New England Tablelands and south west) in soil Map Units where Spanish fleas were released, provided a preliminary means to ground truth the map. There was a good relationship between mean pellet count score and the index of abundance for soil Map Units. Rabbit pellet counts may allow extension of the map into other parts of Australia where there were no Spanish rabbit fleas released and where there may be no other consistent information on rabbit location and density. The recent Equine Influenza outbreak provided a further test of the value of this mapping method. The distribution and density of domestic horses were mapped to provide estimates of the number of horses in various regions. These estimates were close to the actual numbers of horses subsequently determined from vaccination records and registrations. The soil Map Units are not simply soil types they contain information on landuse and vegetation and the soil classification is relatively localised. These properties make this mapping method useful, not only for rabbits, but also for other species that are not so dependent on soil type for survival.
Resumo:
Rabbits released in Australia in 1859 spread to most areas of suitable habitat by 1910 causing great damage to the environment and primary industries. Measurement of damage is essential to justify spending money and utilising resources to remove rabbits. Damage to pasture and biodiversity may be irreversible and therefore difficult to measure without comparison with an area that has never suffered such damage. A rabbit proof fence completed in 1906 protected a large part of south east Queensland from rabbits. The Darling Downs Moreton Rabbit Board (DDMRB) continues to maintain the fence and keep the area relatively free of rabbits. This area is unique because it is highly suitable for rabbits and yet it has never ‘experienced’ the damage caused by plagues of uncontrolled rabbits. A study site was established where the DDMRB fence separates an area heavily used by rabbits (‘dirty side’) from an area that has never been infested by rabbits (‘clean side’). The number and location of all rabbit warrens and log piles were recorded. The absence of warrens from the ‘clean side’ shows clearly that the rabbit proof fence has prevented rabbits from establishing warren systems. The ‘dirty side’ is characterised by a high number of warrens, a high density of rabbits, fewer pasture species and low macropod activity. Future work will determine whether the rabbit populations are viable in the absence of rabbit warrens. We plan to radio collar rabbits on both sides of the fence to measure their survival rate. In selected warrens and log piles of varying degrees of complexity and size, rabbits will be trapped and information on reproduction and age structure will be collected. This will allow better targeting of the source of rabbits during control operations. Once the initial comparative analysis of the site has been completed, all rabbit warrens will be destroyed on the dirty side of the fence. After rabbits are removed from this area, monitoring will continue to determine if pasture and biodiversity on opposite sides of the fence begin to mirror each other.
Resumo:
For pasture growth in the semi-arid tropics of north-east Australia, where up to 80% of annual rainfall occurs between December and March, the timing and distribution of rainfall events is often more important than the total amount. In particular, the timing of the 'green break of the season' (GBOS) at the end of the dry season, when new pasture growth becomes available as forage and a live-weight gain is measured in cattle, affects several important management decisions that prevent overgrazing and pasture degradation. Currently, beef producers in the region use a GBOS rule based on rainfall (e. g. 40mm of rain over three days by 1 December) to define the event and make their management decisions. A survey of 16 beef producers in north-east Queensland shows three quarters of respondents use a rainfall amount that occurs in only half or less than half of all years at their location. In addition, only half the producers expect the GBOS to occur within two weeks of the median date calculated by the CSIRO plant growth days model GRIM. This result suggests that in the producer rules, either the rainfall quantity or the period of time over which the rain is expected, is unrealistic. Despite only 37% of beef producers indicating that they use a southern oscillation index (SOI) forecast in their decisions, cross validated LEPS (linear error in probability space) analyses showed both the average 3 month July-September SOI and the 2 month August-September SOI have significant forecast skill in predicting the probability of both the amount of wet season rainfall and the timing of the GBOS. The communication and implementation of a rigorous and realistic definition of the GBOS, and the likely impacts of anthropogenic climate change on the region are discussed in the context of the sustainable management of northern Australian rangelands.
Resumo:
It has been reported that high-density planting of sugarcane can improve cane and sugar yield through promoting rapid canopy closure and increasing radiation interception earlier in crop growth. It is widely known that the control of adverse soil biota through fumigation (removes soil biological constraints and improves soil health) can improve cane and sugar yield. Whether the responses to high-density planting and improved soil health are additive or interactive has important implications for the sugarcane production system. Field experiments established at Bundaberg and Mackay, Queensland, Australia, involved all combinations of 2-row spacings (0.5 and 1.5 m), two planting densities (27 000 and 81 000 two-eyed setts/ha), and two soil fumigation treatments (fumigated and non-fumigated). The Bundaberg experiment had two cultivars (Q124, Q155), was fully irrigated, and harvested 15 months after planting. The Mackay experiment had one cultivar (Q117), was grown under rainfed conditions, and harvested 10 months after planting. High-density planting (81 000 setts/ha in 0.5-m rows) did not produce any more cane or sugar yield at harvest than low-density planting (27 000 setts/ha in 1.5-m rows) regardless of location, crop duration (15 v. 10 months), water supply (irrigated v. rainfed), or soil health (fumigated v. non-fumigated). Conversely, soil fumigation generally increased cane and sugar yields regardless of site, row spacing, and planting density. In the Bundaberg experiment there was a large fumigation x cultivar x density interaction (P<0.01). Cultivar Q155 responded positively to higher planting density in non-fumigated soil but not in fumigated soil, while Q124 showed a negative response to higher planting density in non-fumigated soil but no response in fumigated soil. In the Mackay experiment, Q117 showed a non-significant trend of increasing yield in response to increasing planting density in non-fumigated soil, similar to the Q155 response in non-fumigated soil at Bundaberg. The similarity in yield across the range of row spacings and planting densities within experiments was largely due to compensation between stalk number and stalk weight, particularly when fumigation was used to address soil health. Further, the different cultivars (Q124 and Q155 at Bundaberg and Q117 at Mackay) exhibited differing physiological responses to the fumigation, row spacing, and planting density treatments. These included the rate of tiller initiation and subsequent loss, changes in stalk weight, and propensity to lodging. These responses suggest that there may be potential for selecting cultivars suited to different planting configurations.
Resumo:
Management of the commercial harvest of kangaroos relies on quotas set annually as a proportion of regular estimates of population size. Surveys to generate these estimates are expensive and, in the larger states, logistically difficult; a cheaper alternative is desirable. Rainfall is a disappointingly poor predictor of kangaroo rate of increase in many areas, but harvest statistics (sex ratio, carcass weight, skin size and animals shot per unit time) potentially offer cost-effective indirect monitoring of population abundance (and therefore trend) and status (i.e. under-or overharvest). Furthermore, because harvest data are collected continuously and throughout the harvested areas, they offer the promise of more intensive and more representative coverage of harvest areas than aerial surveys do. To be useful, harvest statistics would need to have a close and known relationship with either population size or harvest rate. We assessed this using longterm (11-22 years) data for three kangaroo species (Macropus rufus, M. giganteus and M. fuliginosus) and common wallaroos (M. robustus) across South Australia, New South Wales and Queensland. Regional variation in kangaroo body size, population composition, shooter efficiency and selectivity required separate analyses in different regions. Two approaches were taken. First, monthly harvest statistics were modelled as a function of a number of explanatory variables, including kangaroo density, harvest rate and rainfall. Second, density and harvest rate were modelled as a function of harvest statistics. Both approaches incorporated a correlated error structure. Many but not all regions had relationships with sufficient precision to be useful for indirect monitoring. However, there was no single relationship that could be applied across an entire state or across species. Combined with rainfall-driven population models and applied at a regional level, these relationships could be used to reduce the frequency of aerial surveys without compromising decisions about harvest management.
Resumo:
Aim: Resolving the origin of invasive plant species is important for understanding the introduction histories of successful invaders and aiding strategies aimed at their management. This study aimed to infer the number and origin(s) of introduction for the globally invasive species, Macfadyena unguis-cati and Jatropha gossypiifolia using molecular data. Location: Native range: Neotropics; Invaded range: North America, Africa, Europe, Asia, Pacific Islands and Australia. Methods: We used chloroplast microsatellites (cpSSRs) to elucidate the origin(s) of introduced populations and calculated the genetic diversity in native and introduced regions. Results: Strong genetic structure was found within the native range of M. unguis-cati, but no genetic structuring was evident in the native range of J. gossypiifolia. Overall, 27 haplotypes were found in the native range of M. unguis-cati. Only four haplotypes were found in the introduced range, with more than 96% of introduced specimens matching a haplotype from Paraguay. In contrast, 15 haplotypes were found in the introduced range of J. gossypiifolia, with all invasive populations, except New Caledonia, comprising multiple haplotypes. Main conclusions: These data show that two invasive plant species from the same native range have had vastly different introduction histories in their non-native ranges. Invasive populations of M. unguis-cati probably came from a single or few independent introductions, whereas most invasive J. gossypiifolia populations arose from multiple introductions or alternatively from a representative sample of genetic diversity from a panmictic native range. As introduced M. unguis-cati populations are dominated by a single haplotype, locally adapted natural enemies should make the best control agents. However, invasive populations of J. gossypiifolia are genetically diverse and the selection of bio-control agents will be considerably more complex.
Resumo:
Biodiversity of sharks in the tropical Indo-Pacific is high, but species-specific information to assist sustainable resource exploitation is scarce. The null hypothesis of population genetic homogeneity was tested for scalloped hammerhead shark (Sphyrna lewini, n=244) and the milkshark (Rhizoprionodon acutus, n=209) from northern and eastern Australia, using nuclear (S. lewini, eight microsatellite loci; R. acutus, six loci) and mitochondrial gene markers (873 base pairs of NADH dehydrogenase subunit 4). We were unable to reject genetic homogeneity for S. lewini, which was as expected based on previous studies of this species. Less expected were similar results for R. acutus, which is more benthic and less vagile than S. lewini. These features are probably driving the genetic break found between Australian and central Indonesian R. acutus (F-statistics; mtDNA, 0.751 to 0.903; microsatellite loci, 0.038 to 0.047). Our results support the spatially-homogeneous management plan for shark species in Queensland, but caution is advised for species yet to be studied.
Resumo:
Major effect genes are often used for germplasm identification, for diversity analyses and as selection targets in breeding. To date, only a few morphological characters have been mapped as major effect genes across a range of genetic linkage maps based on different types of molecular markers in sorghum (Sorghum bicolor (L.) Moench). This study aims to integrate all available previously mapped major effect genes onto a complete genome map, linked to the whole genome sequence, allowing sorghum breeders and researchers to link this information to QTL studies and to be aware of the consequences of selection for major genes. This provides new opportunities for breeders to take advantage of readily scorable morphological traits and to develop more effective breeding strategies. We also provide examples of the impact of selection for major effect genes on quantitative traits in sorghum. The concepts described in this paper have particular application to breeding programmes in developing countries where molecular markers are expensive or impossible to access.
Resumo:
Aim: This study investigated the use of stable δ13C and δ18O isotopes in the sagittal otolith carbonate of narrow-barred Spanish mackerel, Scomberomorus commerson, as indicators of population structure across Australia. Location: Samples were collected from 25 locations extending from the lower west coast of Western Australia (30°), across northern Australian waters, and to the east coast of Australia (18°) covering a coastline length of approximately 9500 km, including samples from Indonesia. Methods: The stable δ13C and δ18O isotopes in the sagittal otolith carbonate of S. commerson were analysed using standard mass spectrometric techniques. The isotope ratios across northern Australian subregions were subjected to an agglomerative hierarchical cluster analysis to define subregions. Isotope ratios within each of the subregions were compared to assess population structure across Australia. Results: Cluster analysis separated samples into four subregions: central Western Australia, north Western Australia, northern Australia and the Gulf of Carpentaria and eastern Australia. Isotope signatures for fish from a number of sampling sites from across Australia and Indonesia were significantly different, indicating population separation. No significant differences were found in otolith isotope ratios between sampling times (no temporal variation). Main conclusions: Significant differences in the isotopic signatures of S. commerson demonstrate that there is unlikely to be any substantial movement of fish among these spatially discrete adult assemblages. The lack of temporal variation among otolith isotope ratios indicates that S. commerson populations do not undergo longshore spatial shifts in distribution during their life history. The temporal persistence of spatially explicit stable isotopic signatures indicates that, at these spatial scales, the population units sampled comprise functionally distinct management units or separate ‘stocks’ for many of the purposes of fisheries management. The spatial subdivision evident among populations of S. commerson across northern and western Australia indicates that it may be advantageous to consider S. commerson population dynamics and fisheries management from a metapopulation perspective (at least at the regional level).