40 resultados para emotional climate
em eResearch Archive - Queensland Department of Agriculture
Resumo:
Decision-making in agriculture is carried out in an uncertain environment with farmers often seeking information to reduce risk. As a result of the extreme variability of rainfall and stream-flows in north-eastern Australia, water supplies for irrigated agriculture are a limiting factor and a source of risk. The present study examined the use of seasonal climate forecasting (SCF) when calculating planting areas for irrigated cotton in the northern Murray Darling Basin. Results show that minimising risk by adjusting plant areas in response to SCF can lead to significant gains in gross margin returns. However, how farmers respond to SCF is dependent on several other factors including irrigators’ attitude towards risk.
Resumo:
The Gascoyne-Murchison region of Western Australia experiences an arid to semi-arid climate with a highly variable temporal and spatial rainfall distribution. The region has around 39.2 million hectares available for pastoral lease and supports predominantly catle and sheep grazing leases. In recent years a number of climate forecasting systems have been available offering rainfall probabilities with different lead times and a forecast period; however, the extent to which these systems are capable of fulfilling the requirements of the local pastoralists is still ambiguous. Issues can range from ensuring forecasts are issued with sufficient lead time to enable key planning or decisions to be revoked or altered, to ensuring forecast language is simple and clear, to negate possible misunderstandings in interpretation. A climate research project sought to provide an objective method to determine which available forecasting systems had the greatest forecasting skill at times of the year relevant to local property management. To aid this climate research project, the study reported here was undertaken with an overall objective of exploring local pastoralists' climate information needs. We also explored how well they understand common climate forecast terms such as 'mean', median' and 'probability', and how they interpret and apply forecast information to decisions. A stratified, proportional random sampling was used for the purpose of deriving the representative sample based on rainfall-enterprise combinations. In order to provide more time for decision-making than existing operational forecasts that are issued with zero lead time, pastoralists requested that forecasts be issued for May-July and January-March with lead times counting down from 4 to 0 months. We found forecasts of between 20 and 50 mm break-of-season or follow-up rainfall were likely to influence decisions. Eighty percent of pastoralists demonstrated in a test question that they had a poor technical understanding of how to interpret the standard wording of a probabilistic median rainfall forecast. this is worthy of further research to investigate whether inappropriate management decisions are being made because the forecasts are being misunderstood. We found more than half the respondents regularly access and use weather and climate forecasts or outlook information from a range of sources and almost three-quarters considered climate information or tools useful, with preferred methods for accessing this information by email, faxback service, internet and the Department of Agriculture Western Australia's Pastoral Memo. Despite differences in enterprise types and rainfall seasonality across the region we found seasonal climate forecasting needs were relatively consistent. It became clear that providing basic training and working with pastoralists to help them understand regional climatic drivers, climate terminology and jargon, and the best ways to apply the forecasts to enhance decision-making are important to improve their use of information. Consideration could also be given to engaging a range of producers to write the climate forecasts themselves in the language they use and understand, in consultation with the scientists who prepare the forecasts.
Resumo:
Researchers developing climate-based forecasts, workshops, software tools and information to aid grazier decisions undertook an evaluation study to enhance planning and benchmark impact. One hundred graziers in Western Queensland were randomly selected from 7 shires and surveyed by mail and telephone (43 respondents) to explore levels of knowledge and use of climate information, practices and information needs. We found 36% of respondents apply the Southern Oscillation Index to property decisions but 92% were unaware El Niño Southern Oscillation’s predictive signal in the region is greater for pasture growth than rainfall, suggesting they may not recognise the potential of pasture growth forecasts. Almost 75% of graziers consider they are conservative or risk averse in their attitude to managing their enterprise. Mail respondents (n= 20) if given a 68%, on average, probability of exceeding median rainfall forecast may change a decision; almost two-thirds vary stocking rate based on forage available, last year’s pasture growth or the Southern Oscillation Index; the balance maintain a constant stocking rate strategy; 90% have access to a computer; 75% to the internet and 95% have a fax. This paper presents findings of the study and draws comparisons with a similar study of 174 irrigators in the Northern Murray-Darling Basin (Aust. J. Exp. Ag. 44, 247-257). New insights and information gained are helping the team better understand client needs and plan, design and extend tools and information tailored to grazier knowledge, practice, information needs and preferences. Results have also provided a benchmark against which to measure project impact and have influenced the team to make important changes to their project planning, activities and methods for transferring technology tailored to grazier preferences.
Resumo:
In recent years, there have been significant developments in climate science relevant to agriculture and natural resource management. Assessing impacts of climate variability and use of seasonal climate forecasts have become increasingly important elements in the management "toolkit" for many Australian farmers. Consideration of climate change further increases the need for improved management strategies. While climate risk extension activities have kept pace with advances in climate science, a national review of the Vocational Education and Training system in Australia in relation to "weather and climate" showed that these topics were "poorly represented" at the management level in the Australian Qualifications Framework, and needed increased emphasis. Consequently, a new Unit of Competency concerning management of climatic risk was developed and accredited to address this deficiency. The objective of the unit was to build knowledge and skills for better management of climate variability via the elements of surveying climatic and enterprise data; analysing climatic risks and opportunities; and developing climatic risk management strategies. This paper describes establishment of a new unit for vocational education that is designed to harness recent developments in applied climate science for better management of Australia's highly variable climate. The main benefits of the new unit of competency, "Developing climatic risk management strategies,"were seen as improving decisions in climate and agriculture, and reducing climate risk exposure to enhance sustainable agriculture. The educational unit is now within the scope of agricultural colleges, universities, and registered training organisations as an accredited unit.
Resumo:
Quantifying the local crop response to irrigation is important for establishing adequate irrigation management strategies. This study evaluated the effect of irrigation applied with subsurface drip irrigation on field corn (Zea mays L.) evapotranspiration (ETc), yield, water use efficiencies (WUE = yield/ETc, and IWUE = yield/irrigation), and dry matter production in the semiarid climate of west central Nebraska. Eight treatments were imposed with irrigation amounts ranging from 53 to 356 mm in 2005 and from 22 to 226 mm in 2006. A soil water balance approach (based on FAO-56) was used to estimate daily soil water and ETc. Treatments resulted in seasonal ETc of 580-663 mm and 466-656 mm in 2005 and 2006, respectively. Yields among treatments differed by as much as 22% in 2005 and 52% in 2006. In both seasons, irrigation significantly affected yields, which increased with irrigation up to a point where irrigation became excessive. Distinct relationships were obtained each season. Yields increased linearly with seasonal ETc (R 2 = 0.89) and ETc/ETp (R 2 = 0.87) (ETp = ETc with no water stress). The yield response factor (ky), which indicates the relative reduction in yield to relative reduction in ETc, averaged 1.58 over the two seasons. WUE increased non-linearly with seasonal ETc and with yield. WUE was more sensitive to irrigation during the drier 2006 season, compared with 2005. Both seasons, IWUE decreased sharply with irrigation. Irrigation significantly affected dry matter production and partitioning into the different plant components (grain, cob, and stover). On average, the grain accounted for the majority of the above-ground plant dry mass (≈59%), followed by the stover (≈33%) and the cob (≈8%). The dry mass of the plant and that of each plant component tended to increase with seasonal ETc. The good relationships obtained in the study between crop performance indicators and seasonal ETc demonstrate that accurate estimates of ETc on a daily and seasonal basis can be valuable for making tactical in-season irrigation management decisions and for strategic irrigation planning and management.
Resumo:
Survey methods were engaged to measure the change in use and knowledge of climate information by pastoralists in western Queensland. The initial mail survey was undertaken in 2000-01 (n=43) and provided a useful benchmark of pastoralists climate knowledge. Two years of climate applications activities were completed and clients were re-surveyed in 2003 (n=49) to measure the change in knowledge and assess the effectiveness of the climate applications activities. Two methods were used to assess changes in client knowledge, viz., self-assessment and test questions. We found that the use of seasonal climate forecasts in decision making increased from 36% in 2001 (n=42) to 51% in 2003 (n=49) (P=0.07). The self-assessment technique was unsatisfactory as a measure of changing knowledge over short periods (1-3 years), but the test question technique was successful and indicated an improvement in climate knowledge among respondents. The increased levels of use of seasonal climate forecasts in management and improved knowledge was partly attributed to the climate applications activities of the project. Further, those who used seasonal forecasting (n=25) didn't understand key components of forecasts (e.g. probability, median) better than those who didn't use seasonal forecasts (n=24) (P>0.05). This identifies the potential for misunderstanding and misinterpretation of forecasts among users and highlights the need for providers of forecasts to understand the difficulties and prepare simply written descriptions of forecasts and disseminate these with the maps showing probabilities. The most preferred means of accessing climate information were internet, email, 'The Season Ahead' newsletter and newspaper. The least preferred were direct contact with extension officers and attending field days and group meetings. Eighty-six percent of respondents used the internet and 67% used ADSL broadband internet (April 2003). Despite these findings, extension officers play a key role in preparing and publishing the information on the web, in emails and newsletters. We also believe that direct contact with extension officers trained in climate applications is desirable in workshop-like events to improve knowledge of the difficult concepts underpinning climate forecasts, which may then stimulate further adoption.
Resumo:
Climate variability and change are risk factors for climate sensitive activities such as agriculture. Managing these risks requires "climate knowledge", i.e. a sound understanding of causes and consequences of climate variability and knowledge of potential management options that are suitable in light of the climatic risks posed. Often such information about prognostic variables (e.g. yield, rainfall, run-off) is provided in probabilistic terms (e.g. via cumulative distribution functions, CDF), whereby the quantitative assessments of these alternative management options is based on such CDFs. Sound statistical approaches are needed in order to assess whether difference between such CDFs are intrinsic features of systems dynamics or chance events (i.e. quantifying evidences against an appropriate null hypothesis). Statistical procedures that rely on such a hypothesis testing framework are referred to as "inferential statistics" in contrast to descriptive statistics (e.g. mean, median, variance of population samples, skill scores). Here we report on the extension of some of the existing inferential techniques that provides more relevant and adequate information for decision making under uncertainty.
Resumo:
To facilitate marketing and export, the Australian macadamia industry requires accurate crop forecasts. Each year, two levels of crop predictions are produced for this industry. The first is an overall longer-term forecast based on tree census data of growers in the Australian Macadamia Society (AMS). This data set currently accounts for around 70% of total production, and is supplemented by our best estimates of non-AMS orchards. Given these total tree numbers, average yields per tree are needed to complete the long-term forecasts. Yields from regional variety trials were initially used, but were found to be consistently higher than the average yields that growers were obtaining. Hence, a statistical model was developed using growers' historical yields, also taken from the AMS database. This model accounted for the effects of tree age, variety, year, region and tree spacing, and explained 65% of the total variation in the yield per tree data. The second level of crop prediction is an annual climate adjustment of these overall long-term estimates, taking into account the expected effects on production of the previous year's climate. This adjustment is based on relative historical yields, measured as the percentage deviance between expected and actual production. The dominant climatic variables are observed temperature, evaporation, solar radiation and modelled water stress. Initially, a number of alternate statistical models showed good agreement within the historical data, with jack-knife cross-validation R2 values of 96% or better. However, forecasts varied quite widely between these alternate models. Exploratory multivariate analyses and nearest-neighbour methods were used to investigate these differences. For 2001-2003, the overall forecasts were in the right direction (when compared with the long-term expected values), but were over-estimates. In 2004 the forecast was well under the observed production, and in 2005 the revised models produced a forecast within 5.1% of the actual production. Over the first five years of forecasting, the absolute deviance for the climate-adjustment models averaged 10.1%, just outside the targeted objective of 10%.
Resumo:
The traditional reductionist approach to science has a tendency to create 'islands of knowledge in a sea of ignorance', with a much stronger focus on analysis of scientific inputs rather than synthesis of socially relevant outcomes. This might be the principal reason why intended end users of climate information generally fail to embrace what the climate science community has to offer. The translation of climate information into real-life action requires 3 essential components: salience (the perceived relevance of the information), credibility (the perceived technical quality of the information) and legitimacy (the perceived objectivity of the process by which the information is shared). We explore each of these components using 3 case studies focused on dryland cropping in Australia, India and Brazil. In regards to 'salience' we discuss the challenge for climate science to be 'policy-relevant', using Australian drought policy as an example. In a village in southern India 'credibility' was gained through engagement between scientists and risk managers with the aim of building social capital, achieved only at high cost to science institutions. Finally, in Brazil we found that 'legitimacy' is a fragile, yet renewable resource that needs to be part of the package for successful climate applications; legitimacy can be easily eroded but is difficult to recover. We conclude that climate risk management requires holistic solutions derived from cross-disciplinary and participatory, user-oriented research. Approaches that combine climate, agroecological and socioeconomic models provide the scientific capabilities for establishment of 'borderless' institutions without disciplinary constraints. Such institutions could provide the necessary support and flexibility to deliver the social benefits of climate science across diverse contexts. Our case studies show that this type of solution is already being applied, and suggest that the climate science community attempt to address existing institutional constraints, which still impede climate risk management.
Resumo:
This paper reports on a purposive survey study which aimed to identify needs for the development, delivery and evaluation of applied climate education for targeted groups, to improve knowledge and skills to better manage under variable climatic conditions. The survey sample consisted of 80 producers and other industry stakeholders in Australia (including representatives from consulting, agricultural extension and agricultural education sectors), with a 58% response rate to the survey. The survey included an assessment of (i) knowledge levels of the Southern Oscillation Index and sea surface temperatures, and (ii) skill and ability in interpreting weather and climate parameters. Results showed that despite many of the respondents having more than 20 years experience in their industry, the only formal climate education or training undertaken by most was a 1-day workshop. Over 80% of the applied climate skills listed in the survey were regarded by respondents as essential or important, but only 42% of educators, 30% of consultants and 28% of producers rated themselves as competent in applying such skills. Essential skills were deemed as those that would enable respondents or their clients to be better prepared for the next extended wet or dry meteorological event, and improved capability in identifying and capitalising on key decision points from climate information and a seasonal climate outlook. The complex issue of forecast accuracy is a confounding obstacle for many in the application of climate information and forecasts in management. Addressing this problem by describing forecast 'limitations and skill' can help to overcome this problem. The survey also highlighted specific climatic tactical and strategic information collated from grazing, cropping and agribusiness enterprises, and showed the value of such information from a users perspective.
Resumo:
Grazing is a major land use in Australia's rangelands. The 'safe' livestock carrying capacity (LCC) required to maintain resource condition is strongly dependent on climate. We reviewed: the approaches for quantifying LCC; current trends in climate and their effect on components of the grazing system; implications of the 'best estimates' of climate change projections for LCC; the agreement and disagreement between the current trends and projections; and the adequacy of current models of forage production in simulating the impact of climate change. We report the results of a sensitivity study of climate change impacts on forage production across the rangelands, and we discuss the more general issues facing grazing enterprises associated with climate change, such as 'known uncertainties' and adaptation responses (e.g. use of climate risk assessment). We found that the method of quantifying LCC from a combination of estimates (simulations) of long-term (>30 years) forage production and successful grazier experience has been well tested across northern Australian rangelands with different climatic regions. This methodology provides a sound base for the assessment of climate change impacts, even though there are many identified gaps in knowledge. The evaluation of current trends indicated substantial differences in the trends of annual rainfall (and simulated forage production) across Australian rangelands with general increases in most of western Australian rangelands ( including northern regions of the Northern Territory) and decreases in eastern Australian rangelands and south-western Western Australia. Some of the projected changes in rainfall and temperature appear small compared with year-to-year variability. Nevertheless, the impacts on rangeland production systems are expected to be important in terms of required managerial and enterprise adaptations. Some important aspects of climate systems science remain unresolved, and we suggest that a risk-averse approach to rangeland management, based on the 'best estimate' projections, in combination with appropriate responses to short-term (1-5 years) climate variability, would reduce the risk of resource degradation. Climate change projections - including changes in rainfall, temperature, carbon dioxide and other climatic variables - if realised, are likely to affect forage and animal production, and ecosystem functioning. The major known uncertainties in quantifying climate change impacts are: (i) carbon dioxide effects on forage production, quality, nutrient cycling and competition between life forms (e.g. grass, shrubs and trees); and (ii) the future role of woody plants including effects of. re, climatic extremes and management for carbon storage. In a simple example of simulating climate change impacts on forage production, we found that increased temperature (3 degrees C) was likely to result in a decrease in forage production for most rangeland locations (e. g. -21% calculated as an unweighted average across 90 locations). The increase in temperature exacerbated or reduced the effects of a 10% decrease/increase in rainfall respectively (-33% or -9%). Estimates of the beneficial effects of increased CO2 (from 350 to 650 ppm) on forage production and water use efficiency indicated enhanced forage production (+26%). The increase was approximately equivalent to the decline in forage production associated with a 3 degrees C temperature increase. The large magnitude of these opposing effects emphasised the importance of the uncertainties in quantifying the impacts of these components of climate change. We anticipate decreases in LCC given that the 'best estimate' of climate change across the rangelands is for a decline (or little change) in rainfall and an increase in temperature. As a consequence, we suggest that public policy have regard for: the implications for livestock enterprises, regional communities, potential resource damage, animal welfare and human distress. However, the capability to quantify these warnings is yet to be developed and this important task remains as a challenge for rangeland and climate systems science.
Resumo:
The complexity, variability and vastness of the northern Australian rangelands make it difficult to assess the risks associated with climate change. In this paper we present a methodology to help industry and primary producers assess risks associated with climate change and to assess the effectiveness of adaptation options in managing those risks. Our assessment involved three steps. Initially, the impacts and adaptation responses were documented in matrices by ‘experts’ (rangeland and climate scientists). Then, a modified risk management framework was used to develop risk management matrices that identified important impacts, areas of greatest vulnerability (combination of potential impact and adaptive capacity) and priority areas for action at the industry level. The process was easy to implement and useful for arranging and analysing large amounts of information (both complex and interacting). Lastly, regional extension officers (after minimal ‘climate literacy’ training) could build on existing knowledge provided here and implement the risk management process in workshops with rangeland land managers. Their participation is likely to identify relevant and robust adaptive responses that are most likely to be included in regional and property management decisions. The process developed here for the grazing industry could be modified and used in other industries and sectors. By 2030, some areas of northern Australia will experience more droughts and lower summer rainfall. This poses a serious threat to the rangelands. Although the impacts and adaptive responses will vary between ecological and geographic systems, climate change is expected to have noticeable detrimental effects: reduced pasture growth and surface water availability; increased competition from woody vegetation; decreased production per head (beef and wool) and gross margin; and adverse impacts on biodiversity. Further research and development is needed to identify the most vulnerable regions, and to inform policy in time to facilitate transitional change and enable land managers to implement those changes.
Resumo:
Climate change projections for Australia predict increasing temperatures, changes to rainfall patterns, and elevated atmospheric carbon dioxide (CO2) concentrations. The aims of this study were to predict plant production responses to elevated CO2 concentrations using the SGS Pasture Model and DairyMod, and then to quantify the effects of climate change scenarios for 2030 and 2070 on predicted pasture growth, species composition, and soil moisture conditions of 5 existing pasture systems in climates ranging from cool temperate to subtropical, relative to a historical baseline. Three future climate scenarios were created for each site by adjusting historical climate data according to temperature and rainfall change projections for 2030, 2070 mid-and 2070 high-emission scenarios, using output from the CSIRO Mark 3 global climate model. In the absence of other climate changes, mean annual pasture production at an elevated CO2 concentration of 550 ppm was predicted to be 24-29% higher than at 380 ppm CO2 in temperate (C-3) species-dominant pastures in southern Australia, with lower mean responses in a mixed C-3/C-4 pasture at Barraba in northern New South Wales (17%) and in a C-4 pasture at Mutdapilly in south-eastern Queensland (9%). In the future climate scenarios at the Barraba and Mutdapilly sites in subtropical and subhumid climates, respectively, where climate projections indicated warming of up to 4.4 degrees C, with little change in annual rainfall, modelling predicted increased pasture production and a shift towards C-4 species dominance. In Mediterranean, temperate, and cool temperate climates, climate change projections indicated warming of up to 3.3 degrees C, with annual rainfall reduced by up to 28%. Under future climate scenarios at Wagga Wagga, NSW, and Ellinbank, Victoria, our study predicted increased winter and early spring pasture growth rates, but this was counteracted by a predicted shorter spring growing season, with annual pasture production higher than the baseline under the 2030 climate scenario, but reduced by up to 19% under the 2070 high scenario. In a cool temperate environment at Elliott, Tasmania, annual production was higher than the baseline in all 3 future climate scenarios, but highest in the 2070 mid scenario. At the Wagga Wagga, Ellinbank, and Elliott sites the effect of rainfall declines on pasture production was moderated by a predicted reduction in drainage below the root zone and, at Ellinbank, the use of deeper rooted plant systems was shown to be an effective adaptation to mitigate some of the effect of lower rainfall.
Resumo:
Because of the variable and changing environment, advisors and farmers are seeking systems that provide risk management support at a number of time scales. The Agricultural Production Systems Research Unit, Toowoomba, Australia has developed a suite of tools to assist advisors and farmers to better manage risk in cropping. These tools range from simple rainfall analysis tools (Rainman, HowWet, HowOften) through crop simulation tools (WhopperCropper and YieldProphet) to the most complex, APSFarm, a whole-farm analysis tool. Most are derivatives of the APSIM crop model. These tools encompass a range of complexity and potential benefit to both the farming community and for government policy. This paper describes, the development and usage of two specific products; WhopperCropper and APSFarm. WhopperCropper facilitates simulation-aided discussion of growers' exposure to risk when comparing alternative crop input options. The user can readily generate 'what-if' scenarios that separate the major influences whilst holding other factors constant. Interactions of the major inputs can also be tested. A manager can examine the effects of input levels (and Southern Oscillation Index phase) to broadly determine input levels that match their attitude to risk. APSFarm has been used to demonstrate that management changes can have different effects in short and long time periods. It can be used to test local advisors and farmers' knowledge and experience of their desired rotation system. This study has shown that crop type has a larger influence than more conservative minimum soil water triggers in the long term. However, in short term dry periods, minimum soil water triggers and maximum area of the various crops can give significant financial gains.
Resumo:
The eucalypt leaf beetle, Paropsis atomaria Olivier, is an increasingly important pest of eucalypt plantations in subtropical eastern Australia. A process-based model, ParopSys, was developed using DYMEXTM and was found to accurately predict the beetle populations. Climate change scenarios within the latest Australian climate model forecast range were run in ParopSys at three locations to predict changes in beetle performance. Relative population peaks of early generations did not change but shifted to earlier in the season. Temperature increases of 1.0 to 1.5 ºC or greater predicted an extra generation of adults at Gympie and Canberra, but not for Lowmead, where increased populations of late season adults were observed under all scenarios. Furthermore, an additional generation of late-larval stages was predicted at temperature increases of greater than 1.0 ºC at Lowmead. Management strategies to address these changes are discussed, as are requirements to improve the predictive capacity of the model.