14 resultados para economic performance
em eResearch Archive - Queensland Department of Agriculture
Resumo:
This project aims to develop integrated irrigation and nutrition management strategies under limited water for irrigators currently investing in overhead irrigation systems (CPLM) to minimize the learning lag in their use and optimize crop and economic performance.
Resumo:
The economic performance of a terminal crossbreeding system based on Brahman cows and a tropically adapted composite herd were compared to a straightbred Brahman herd. All systems were targeted to meet specifications of the grass-finished Japanese market. The production system modelled represented a typical individual central Queensland integrated breeding/finishing enterprise or a northern Australian vertically integrated enterprise with separate breeding and finishing properties. Due mainly to a reduced age of turnoff of Crossbred and Composite sale animals and an improved weaning rate in the Composite herd, Crossbred and Composite herds returned a gross margin of $7 and $24 per Adult Equivalent (AE) respectively above that of the Brahman herd. The benefits of changing 25% of the existing 85% of Brahmans in the northern Australian herd to either Crossbreds or Composites over a 10-year period were also examined. With no premium for carcass quality in Crossbred and Composite sale animals, annual benefits were $16 M and $61 M for Crossbreds and Composites in 2013. The cumulative Present Value (PV) of this shift over the 10-year period was $88 M and $342 M respectively, discounted at 7%. When a 5c per kg premium for carcass quality was included, differences in annual benefits rose to $30 M and $75 M and cumulative PVs to $168 M and $421 M for Crossbreds and Composites respectively.
Resumo:
Models that implement the bio-physical components of agro-ecosystems are ideally suited for exploring sustainability issues in cropping systems. Sustainability may be represented as a number of objectives to be maximised or minimised. However, the full decision space of these objectives is usually very large and simplifications are necessary to safeguard computational feasibility. Different optimisation approaches have been proposed in the literature, usually based on mathematical programming techniques. Here, we present a search approach based on a multiobjective evaluation technique within an evolutionary algorithm (EA), linked to the APSIM cropping systems model. A simple case study addressing crop choice and sowing rules in North-East Australian cropping systems is used to illustrate the methodology. Sustainability of these systems is evaluated in terms of economic performance and resource use. Due to the limited size of this sample problem, the quality of the EA optimisation can be assessed by comparison to the full problem domain. Results demonstrate that the EA procedure, parameterised with generic parameters from the literature, converges to a useable solution set within a reasonable amount of time. Frontier ‘‘peels’’ or Pareto-optimal solutions as described by the multiobjective evaluation procedure provide useful information for discussion on trade-offs between conflicting objectives.
Resumo:
A review of factors that may impact on the capacity of beef cattle females, grazing semi-extensive to extensive pastures in northern Australia, to conceive, maintain a pregnancy and wean a calf was conducted. Pregnancy and weaning rates have generally been used to measure the reproductive performance of herds. However, this review recognises that reproductive efficiency and the general measures associated with it more effectively describe the economic performance of beef cattle enterprises. More specifically, reproductive efficiency is influenced by (1) pregnancy rate which is influenced by (i) age at puberty; (ii) duration of post-partum anoestrus; (iii) fertilisation failure and (iv) embryo survival; while (2) weight by number of calves per breeding female retained for mating is influenced by (i) cow survival; (ii) foetal survival; and (iii) calf survival; and (3) overall lifetime calf weight weaned per mating. These measures of reproductive efficiency are discussed in depth. Further, a range of infectious and non-infectious factors, namely, environmental, physiological, breed and genetic factors and their impact on these stages of the reproductive cycle are investigated and implications for the northern Australian beef industry are discussed. Finally, conclusions and recommendations to minimise reproductive inefficiencies based on current knowledge are presented.
Resumo:
The Oakleigh Farming Company has been progressively changing its farming practices on its property at Cordelia in the Herbert River District. During the last ten years the changes have included the adoption of raised beds at 1.8m row spacing, controlled traffic and dual row planting using double disc opener planters. This paper describes some of the changes that have been made to the farming system and examines their impact on farm productivity and economic performance. Since changing to the current farming system, the farm gross margin has increased from $789/ha to $897/ha. In addition to the numerous cost savings, the new farming system has reduced the time spent on tractors by 54% across the whole farm. Return on investment on the 1997 farming system was 1.6% versus 2.7% on their current farming system. The farming company is continually looking for new ways to improve profitability and believes that innovation is critical for the long term sustainability of the sugar industry.
Resumo:
Non-Technical Summary Seafood CRC Project 2009/774. Harvest strategy evaluations and co-management for the Moreton Bay Trawl Fishery Principal Investigator: Dr Tony Courtney, Principal Fisheries Biologist Fisheries and Aquaculture, Agri-Science Queensland Department of Agriculture, Fisheries and Forestry Level B1, Ecosciences Precinct, Joe Baker St, Dutton Park, Queensland 4102 Email: tony.courtney@daff.qld.gov.au Project objectives: 1. Review the literature and data (i.e., economic, biological and logbook) relevant to the Moreton Bay trawl fishery. 2. Identify and prioritise management objectives for the Moreton Bay trawl fishery, as identified by the trawl fishers. 3. Undertake an economic analysis of Moreton Bay trawl fishery. 4. Quantify long-term changes to fishing power for the Moreton Bay trawl fishery. 5. Assess priority harvest strategies identified in 2 (above). Present results to, and discuss results with, Moreton Bay Seafood Industry Association (MBSIA), fishers and Fisheries Queensland. Note: Additional, specific objectives for 2 (above) were developed by fishers and the MBSIA after commencement of the project. These are presented in detail in section 5 (below). The project was an initiative of the MBSIA, primarily in response to falling profitability in the Moreton Bay prawn trawl fishery. The analyses were undertaken by a consortium of DAFF, CSIRO and University of Queensland researchers. This report adopted the Australian Standard Fish Names (http://www.fishnames.com.au/). Trends in catch and effort The Moreton Bay otter trawl fishery is a multispecies fishery, with the majority of the catch composed of Greasyback Prawns (Metapenaeus bennettae), Brown Tiger Prawns (Penaeus esculentus), Eastern King Prawns (Melicertus plebejus), squid (Uroteuthis spp., Sepioteuthis spp.), Banana Prawns (Fenneropenaeus merguiensis), Endeavour Prawns (Metapenaeus ensis, Metapenaeus endeavouri) and Moreton Bay bugs (Thenus parindicus). Other commercially important byproduct includes blue swimmer crabs (Portunus armatus), three-spot crabs (Portunus sanguinolentus), cuttlefish (Sepia spp.) and mantis shrimp (Oratosquilla spp.). Logbook catch and effort data show that total annual reported catch of prawns from the Moreton Bay otter trawl fishery has declined to 315 t in 2008 from a maximum of 901 t in 1990. The number of active licensed vessels participating in the fishery has also declined from 207 in 1991 to 57 in 2010. Similarly, fishing effort has fallen from a peak of 13,312 boat-days in 1999 to 3817 boat-days in 2008 – a 71% reduction. The declines in catch and effort are largely attributed to reduced profitability in the fishery due to increased operational costs and depressed prawn prices. The low prawn prices appear to be attributed to Australian aquacultured prawns and imported aquacultured vannamei prawns, displacing the markets for trawl-caught prawns, especially small species such as Greasyback Prawns which traditionally dominated landings in Moreton Bay. In recent years, the relatively high Australian dollar has resulted in reduced exports of Australian wild-caught prawns. This has increased supply on the domestic market which has also suppressed price increases. Since 2002, Brown Tiger Prawns have dominated annual reported landings in the Moreton Bay fishery. While total catch and effort in the bay have declined to historically low levels, the annual catch and catch rates of Brown Tiger Prawns have been at record highs in recent years. This appears to be at least partially attributed to the tiger prawn stock having recovered from excessive effort in previous decades. The total annual value of the Moreton Bay trawl fishery catch, including byproduct, is about $5 million, of which Brown Tiger Prawns account for about $2 million. Eastern King Prawns make up about 10% of the catch and are mainly caught in the bay from October to December as they migrate to offshore waters outside the bay where they contribute to a large mono-specific trawl fishery. Some of the Eastern King Prawns harvested in Moreton Bay may be growth overfished (i.e., caught below the size required to maximise yield or value), although the optimum size-at-capture was not determined in this study. Banana Prawns typically make up about 5% of the catch, but can exceed 20%, particularly following heavy rainfall. Economic analysis of the fishery From the economic survey, cash profits were, on average, positive for both fleet segments in both years of the survey. However, after the opportunity cost of capital and depreciation were taken into account, the residual owner-operator income was relatively low, and substantially lower than the average share of revenue paid to employed skippers. Consequently, owner-operators were earning less than their opportunity cost of their labour, suggesting that the fleets were economically unviable in the longer term. The M2 licensed fleet were, on average, earning similar boat cash profits as the T1/M1 fleet, although after the higher capital costs were accounted for the T1/M1 boats were earning substantially lower returns to owner-operator labour. The mean technical efficiency for the fleet as a whole was estimated to be 0.67. That is, on average, the boats were only catching 67 per cent of what was possible given their level of inputs (hours fished and hull units). Almost one-quarter of observations had efficiency scores above 0.8, suggesting a substantial proportion of the fleet are relatively efficient, but some are also relatively inefficient. Both fleets had similar efficiency distributions, with median technical efficiency score of 0.71 and 0.67 for the M2 and T1/M1 boats respectively. These scores are reasonably consistent with other studies of prawn trawl fleets in Australia, although higher average efficiency scores were found in the NSW prawn trawl fleet. From the inefficiency model, several factors were found to significantly influence vessel efficiency. These included the number of years of experience as skipper, the number of generations that the skipper’s family had been fishing and the number of years schooling. Skippers with more schooling were significantly more efficient than skippers with lower levels of schooling, consistent with other studies. Skippers who had been fishing longer were, in fact, less efficient than newer skippers. However, this was mitigated in the case of skippers whose family had been involved in fishing for several generations, consistent with other studies and suggesting that skill was passed through by families over successive generations. Both the linear and log-linear regression models of total fishing effort against the marginal profit per hour performed reasonably well, explaining between 70 and 84 per cent of the variation in fishing effort. As the models had different dependent variables (one logged and the other not logged) this is not a good basis for model choice. A better comparator is the square root of the mean square error (SMSE) expressed as a percentage of the mean total effort. On this criterion, both models performed very similarly. The linear model suggests that each additional dollar of average profits per hour in the fishery increases total effort by around 26 hours each month. From the log linear model, each percentage increase in profits per hour increases total fishing effort by 0.13 per cent. Both models indicate that economic performance is a key driver of fishing effort in the fishery. The effect of removing the boat-replacement policy is to increase individual vessel profitability, catch and effort, but the overall increase in catch is less than that removed by the boats that must exit the fishery. That is, the smaller fleet (in terms of boat numbers) is more profitable but the overall catch is not expected to be greater than before. This assumes, however, that active boats are removed, and that these were also taking an average level of catch. If inactive boats are removed, then catch of the remaining group as a whole could increase by between 14 and 17 per cent depending on the degree to which costs are reduced with the new boats. This is still substantially lower than historical levels of catch by the fleet. Fishing power analyses An analysis of logbook data from 1988 to 2010, and survey information on fishing gear, was performed to estimate the long-term variation in the fleet’s ability to catch prawns (known as fishing power) and to derive abundance estimates of the three most commercially important prawn species (i.e., Brown Tiger, Eastern King and Greasyback Prawns). Generalised linear models were used to explain the variation in catch as a function of effort (i.e., hours fished per day), vessel and gear characteristics, onboard technologies, population abundance and environmental factors. This analysis estimated that fishing power associated with Brown Tiger and Eastern King Prawns increased over the past 20 years by 10–30% and declined by approximately 10% for greasybacks. The density of tiger prawns was estimated to have almost tripled from around 0.5 kg per hectare in 1988 to 1.5 kg/ha in 2010. The density of Eastern King Prawns was estimated to have fluctuated between 1 and 2 kg per hectare over this time period, without any noticeable overall trend, while Greasyback Prawn densities were estimated to have fluctuated between 2 and 6 kg per hectare, also without any distinctive trend. A model of tiger prawn catches was developed to evaluate the impact of fishing on prawn survival rates in Moreton Bay. The model was fitted to logbook data using the maximum-likelihood method to provide estimates of the natural mortality rate (0.038 and 0.062 per week) and catchability (which can be defined as the proportion of the fished population that is removed by one unit of effort, in this case, estimated to be 2.5 ± 0.4 E-04 per boat-day). This approach provided a method for industry and scientists to develop together a realistic model of the dynamics of the fishery. Several aspects need to be developed further to make this model acceptable to industry. Firstly, there is considerable evidence to suggest that temperature influences prawn catchability. This ecological effect should be incorporated before developing meaningful harvest strategies. Secondly, total effort has to be allocated between each species. Such allocation of effort could be included in the model by estimating several catchability coefficients. Nevertheless, the work presented in this report is a stepping stone towards estimating essential fishery parameters and developing representative mathematical models required to evaluate harvest strategies. Developing a method that allowed an effective discussion between industry, management and scientists took longer than anticipated. As a result, harvest strategy evaluations were preliminary and only included the most valuable species in the fishery, Brown Tiger Prawns. Additional analyses and data collection, including information on catch composition from field sampling, migration rates and recruitment, would improve the modelling. Harvest strategy evaluations As the harvest strategy evaluations are preliminary, the following results should not be adopted for management purposes until more thorough evaluations are performed. The effects, of closing the fishery for one calendar month, on the annual catch and value of Brown Tiger Prawns were investigated. Each of the 12 months (i.e., January to December) was evaluated. The results were compared against historical records to determine the magnitude of gain or loss associated with the closure. Uncertainty regarding the trawl selectivity was addressed using two selectivity curves, one with a weight at 50% selection (S50%) of 7 g, based on research data, and a second with S50% of 14 g, put forward by industry. In both cases, it was concluded that any monthly closure after February would not be beneficial to the industry. The magnitude of the benefit of closing the fishery in either January or February was sensitive to which mesh selectivity curve that was assumed, with greater benefit achieved when the smaller selectivity curve (i.e., S50% = 7 g) was assumed. Using the smaller selectivity (S50% = 7 g), the expected increase in catch value was 10–20% which equates to $200,000 to $400,000 annually, while the larger selectivity curve (S50% = 14 g) suggested catch value would be improved by 5–10%, or $100,000 to $200,000. The harvest strategy evaluations showed that greater benefits, in the order of 30–60% increases in the tiger annual catch value, could have been obtained by closing the fishery early in the year when annual effort levels were high (i.e., > 10,000 boat-days). In recent years, as effort levels have declined (i.e., ~4000 boat-days annually), expected benefits from such closures are more modest. In essence, temporal closures offer greater benefit when fishing mortality rates are high. A spatial analysis of Brown Tiger Prawn catch and effort was also undertaken to obtain a better understanding of the prawn population dynamics. This indicated that, to improve profitability of the fishery, fishers could consider closing the fishery in the period from June to October, which is already a period of low profitability. This would protect the Brown Tiger Prawn spawning stock, increase catch rates of all species in the lucrative pre-Christmas period (November–December), and provide fishers with time to do vessel maintenance, arrange markets for the next season’s harvest, and, if they wish, work at other jobs. The analysis found that the instantaneous rate of total mortality (Z) for the March–June period did not vary significantly over the last two decades. As the Brown Tiger Prawn population in Moreton Bay has clearly increased over this time period, an interesting conclusion is that the instantaneous rate of natural mortality (M) must have increased, suggesting that tiger prawn natural mortality may be density-dependent at this time of year. Mortality rates of tiger prawns for June–October were found to have decreased over the last two decades, which has probably had a positive effect on spawning stocks in the October–November spawning period. Abiotic effects on the prawns The influence of air temperature, rainfall, freshwater flow, the southern oscillation index (SOI) and lunar phase on the catch rates of the four main prawn species were investigated. The analyses were based on over 200,000 daily logbook catch records over 23 years (i.e., 1988–2010). Freshwater flow was more influential than rainfall and SOI, and of the various sources of flow, the Brisbane River has the greatest volume and influence on Moreton Bay prawn catches. A number of time-lags were also considered. Flow in the preceding month prior to catch (i.e., 30 days prior, Logflow1_30) and two months prior (31–60 days prior, Logflow31_60) had strong positive effects on Banana Prawn catch rates. Average air temperature in the preceding 4-6 months (Temp121_180) also had a large positive effect on Banana Prawn catch rates. Flow in the month immediately preceding catch (Logflow1_30) had a strong positive influence on Greasyback Prawn catch rates. Air temperature in the preceding two months prior to catch (Temp1_60) had a large positive effect on Brown Tiger Prawn catch rates. No obvious or marked effects were detected for Eastern King Prawns, although interestingly, catch rates declined with increasing air temperature 4–6 months prior to catch. As most Eastern King Prawn catches in Moreton Bay occur in October to December, the results suggest catch rates decline with increasing winter temperatures. In most cases, the prawn catch rates declined with the waxing lunar phase (high luminance/full moon), and increased with the waning moon (low luminance/new moon). The SOI explains little additional variation in prawn catch rates (~ <2%), although its influence was higher for Banana Prawns. Extrapolating findings of the analyses to long-term climate change effects should be interpreted with caution. That said, the results are consistent with likely increases in abundance in the region for the two tropical species, Banana Prawns and Brown Tiger Prawns, as coastal temperatures rise. Conversely, declines in abundance could be expected for the two temperate species, Greasyback and Eastern King Prawns. Corporate management structures An examination of alternative governance systems was requested by the industry at one of the early meetings, particularly systems that may give them greater autonomy in decision making as well as help improve the marketing of their product. Consequently, a review of alternative management systems was undertaken, with a particular focus on the potential for self-management of small fisheries (small in terms of number of participants) and corporate management. The review looks at systems that have been implemented or proposed for other small fisheries internationally, with a particular focus on self-management as well as the potential benefits and challenges for corporate management. This review also highlighted particular opportunities for the Moreton Bay prawn fishery. Corporate management differs from other co-management and even self-management arrangements in that ‘ownership’ of the fishery is devolved to a company in which fishers and government are shareholders. The company manages the fishery as well as coordinates marketing to ensure that the best prices are received and that the catch taken meets the demands of the market. Coordinated harvesting will also result in increased profits, which are returned to fishers in the form of dividends. Corporate management offers many of the potential benefits of an individual quota system without formally implementing such a system. A corporate management model offers an advantage over a self-management model in that it can coordinate both marketing and management to take advantage of this unique geographical advantage. For such a system to be successful, the fishery needs to be relatively small and self- contained. Small in this sense is in terms of number of operators. The Moreton Bay prawn fishery satisfies these key conditions for a successful self-management and potentially corporate management system. The fishery is small both in terms of number of participants and geography. Unlike other fisheries that have progressed down the self-management route, the key market for the product from the Moreton Bay fishery is right at its doorstep. Corporate management also presents a number of challenges. First, it will require changes in the way fishers operate. In particular, the decision on when to fish and what to catch will be taken away from the individual and decided by the collective. Problems will develop if individuals do not join the corporation but continue to fish and market their own product separately. While this may seem an attractive option to fishers who believe they can do better independently, this is likely to be just a short- term advantage with an overall long-run cost to themselves as well as the rest of the industry. There are also a number of other areas that need further consideration, particularly in relation to the allocation of shares, including who should be allocated shares (e.g. just boat owners or also some employed skippers). Similarly, how harvesting activity is to be allocated by the corporation to the fishers. These are largely issues that cannot be answered without substantial consultation with those likely to be affected, and these groups cannot give these issues serious consideration until the point at which they are likely to become a reality. Given the current structure and complexity of the fishery, it is unlikely that such a management structure will be feasible in the short term. However, the fishery is a prime candidate for such a model, and development of such a management structure in the future should be considered as an option for the longer term.
Resumo:
Inter-annual rainfall variability is a major challenge to sustainable and productive grazing management on rangelands. In Australia, rainfall variability is particularly pronounced and failure to manage appropriately leads to major economic loss and environmental degradation. Recommended strategies to manage sustainably include stocking at long-term carrying capacity (LTCC) or varying stock numbers with forage availability. These strategies are conceptually simple but difficult to implement, given the scale and spatial heterogeneity of grazing properties and the uncertainty of the climate. This paper presents learnings and insights from northern Australia gained from research and modelling on managing for rainfall variability. A method to objectively estimate LTCC in large, heterogeneous paddocks is discussed, and guidelines and tools to tactically adjust stocking rates are presented. The possible use of seasonal climate forecasts (SCF) in management is also considered. Results from a 13-year grazing trial in Queensland show that constant stocking at LTCC was far more profitable and largely maintained land condition compared with heavy stocking (HSR). Variable stocking (VAR) with or without the use of SCF was marginally more profitable, but income variability was greater and land condition poorer than constant stocking at LTCC. Two commercial scale trials in the Northern Territory with breeder cows highlighted the practical difficulties of variable stocking and provided evidence that heavier pasture utilisation rates depress reproductive performance. Simulation modelling across a range of regions in northern Australia also showed a decline in resource condition and profitability under heavy stocking rates. Modelling further suggested that the relative value of variable v. constant stocking depends on stocking rate and land condition. Importantly, variable stocking may possibly allow slightly higher stocking rates without pasture degradation. Enterprise-level simulations run for breeder herds nevertheless show that poor economic performance can occur under constant stocking and even under variable stocking in some circumstances. Modelling and research results both suggest that a form of constrained flexible stocking should be applied to manage for climate variability. Active adaptive management and research will be required as future climate changes make managing for rainfall variability increasingly challenging.
Resumo:
Grazing experiments are usually used to quantify and demonstrate the biophysical impact of grazing strategies, with the Wambiana grazing experiment being one of the longest running such experiments in northern Australia. Previous economic analyses of this experiment suggest that there is a major advantage in stocking at a fixed, moderate stocking rate or in using decision rules allowing flexible stocking to match available feed supply. The present study developed and applied a modelling procedure to use data collected at the small plot, land type and paddock scales at the experimental site to simulate the property-level implications of a range of stocking rates for a breeding-finishing cattle enterprise. The greatest economic performance was achieved at a moderate stocking rate of 10.5 adult equivalents 100 ha(-1). For the same stocking rate over time, the fixed stocking strategy gave a greater economic performance than strategies that involved moderate changes to stocking rates each year in response to feed supply. Model outcomes were consistent with previous economic analyses using experimental data. Further modelling of the experimental data is warranted and similar analyses could be applied to other major grazing experiments to allow the scaling of results to greater scales.
Resumo:
In dryland cotton cropping systems, the main weeds and effectiveness of management practices were identified, and the economic impact of weeds was estimated using information collected in a postal and a field survey of Southern Queensland and northern New South Wales. Forty-eight completed questionnaires were returned, and 32 paddocks were monitored in early and late summer for weed species and density. The main problem weeds were bladder ketmia (Hibiscus trionum), common sowthistle (Sonchus oleraceus), barnyard grasses (Echinochloa spp.), liverseed grass (Urochloa panicoides) and black bindweed (Fallopia convolvulus), but the relative importance of these differed with crops, fallows and crop rotations. The weed flora was diverse with 54 genera identified in the field survey. Control of weed growth in rotational crops and fallows depended largely on herbicides, particularly glyphosate in fallow and atrazine in sorghum, although effective control was not consistently achieved. Weed control in dryland cotton involved numerous combinations of selective herbicides, several non-selective herbicides, inter-row cultivation and some manual chipping. Despite this, residual weeds were found at 38-59% of initial densities in about 3-quarters of the survey paddocks. The on-farm financial costs of weeds ranged from $148 to 224/ha.year depending on the rotation, resulting in an estimated annual economic cost of $19.6 million. The approach of managing weed populations across the whole cropping system needs wider adoption to reduce the weed pressure in dryland cotton and the economic impact of weeds in the long term. Strategies that optimise herbicide performance and minimise return of weed seed to the soil are needed. Data from the surveys provide direction for research to improve weed management in this cropping system. The economic framework provides a valuable measure of evaluating likely future returns from technologies or weed management improvements.
Resumo:
Conducting National Variety Testing for wheat, barley, durum and chickpea throughout Queensland.
Resumo:
R&D to facilitate incorporation of grain and pulse crop phases in Central Queensland irrigated cotton monoculture systems and improve profitability of regional cropping systems.
Resumo:
Pasture degradation, particularly that attributable to overgrazing, is a significant problem across the northern Australian rangelands. Although grazing studies have identified the scope for wet season resting strategies to be used to rehabilitate degraded pastures, the economic outcome of these strategies has not been extensively demonstrated. An exploratory study of the prospective economic value of wet season resting is presented using an economic simulation model of a 28000 ha beef enterprise located in the Charters Towers region of north-eastern Australia to explore seven hypothetical scenarios centred on the projected performance of a wet season resting strategy. A series of 20-year simulations for a range of pasture recovery profiles, stocking capacity, animal productivity responses, beef prices and agistment options are compared with a baseline scenario of taking no action. Estimates of the net present value of the 20-year difference in total enterprise gross margins between the various resting options and the 'do nothing' option identify that wet season resting can offer a positive economic return for the range of scenarios examined, although this is contingent on the assumptions that are made concerning the trajectories of change in carrying capacity and animal productivity. Some implications for management and policy making to support the practical implementation of wet season resting strategies are discussed.
Resumo:
Cabomba caroliniana A.Gray (cabomba) is an invasive aquatic species causing serious environmental and socio-economic impacts. In particular, cabomba has a tendency to create large monospecific stands once introduced and appears to negatively affect native macrophyte diversity. Experiments have shown that cabomba, when cultured in isolation, grew significantly faster than any of the other macrophytes tested. However, competitive superiority over other macrophytes declined with increasing pH. Contrary to this, cabomba seemed to be a weak competitor in co-culture and few macrophytes showed signs of being affected by negative competitive interactions with cabomba. The reduction in growth performance at pH >7.5 and the fact that cabomba appears to be a weak competitor means that cabomba might not be able to establish everywhere and displace other plants. This weakness of cabomba could potentially be exploited in future management and rehabilitation efforts.