2 resultados para driven

em eResearch Archive - Queensland Department of Agriculture


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nitrogen-driven trade-off between nitrogen utilisation efficiency (yield per unit nitrogen uptake) and water use efficiency (yield per unit evapotranspiration) is widespread and results from well established, multiple effects of nitrogen availability on the water, carbon and nitrogen economy of crops. Here we used a crop model (APSIM) to simulate the yield, evapotranspiration, soil evaporation and nitrogen uptake of wheat, and analysed yield responses to water, nitrogen and climate using a framework analogous to the rate-duration model of determinate growth. The relationship between modelled grain yield (Y) and evapotranspiration (ET) was fitted to a linear-plateau function to derive three parameters: maximum yield (Ymax), the ET break-point when yield reaches its maximum (ET#), and the rate of yield response in the linear phase ([Delta]Y/[Delta]ET). Against this framework, we tested the hypothesis that nitrogen deficit reduces maximum yield by reducing both the rate ([Delta]Y/[Delta]ET) and the range of yield response to evapotranspiration, i.e. ET# - Es, where Es is modelled median soil evaporation. Modelled data reproduced the nitrogen-driven trade-off between nitrogen utilisation efficiency and water use efficiency in a transect from Horsham (36°S) to Emerald (23°S) in eastern Australia. Increasing nitrogen supply from 50 to 250 kg N ha-1 reduced yield per unit nitrogen uptake from 29 to 12 kg grain kg-1 N and increased yield per unit evapotranspiration from 6 to 15 kg grain ha-1 mm-1 at Emerald. The same increment in nitrogen supply reduced yield per unit nitrogen uptake from 30 to 25 kg grain kg-1 N and increased yield per unit evapotranspiration from 6 to 25 kg grain ha-1 mm-1 at Horsham. Maximum yield ranged from 0.9 to 6.4 t ha-1. Consistent with our working hypothesis, reductions in maximum yield with nitrogen deficit were associated with both reduction in the rate of yield response to ET and compression of the range of yield response to ET. Against the notion of managing crops to maximise water use efficiency in low rainfall environments, we emphasise the trade-off between water use efficiency and nitrogen utilisation efficiency, particularly under conditions of high nitrogen-to-grain price ratio. The rate-range framework to characterise the relationship between yield and evapotranspiration is useful to capture this trade-off as the parameters were responsive to both nitrogen supply and climatic factors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Increased disease resistance is a key target of cereal breeding programs, with disease outbreaks continuing to threaten global food production, particularly in Africa. Of the disease resistance gene families, the nucleotide-binding site plus leucine-rich repeat (NBS-LRR) family is the most prevalent and ancient and is also one of the largest gene families known in plants. The sequence diversity in NBS-encoding genes was explored in sorghum, a critical food staple in Africa, with comparisons to rice and maize and with comparisons to fungal pathogen resistance QTL. Results In sorghum, NBS-encoding genes had significantly higher diversity in comparison to non NBS-encoding genes and were significantly enriched in regions of the genome under purifying and balancing selection, both through domestication and improvement. Ancestral genes, pre-dating species divergence, were more abundant in regions with signatures of selection than in regions not under selection. Sorghum NBS-encoding genes were also significantly enriched in the regions of the genome containing fungal pathogen disease resistance QTL; with the diversity of the NBS-encoding genes influenced by the type of co-locating biotic stress resistance QTL. Conclusions NBS-encoding genes are under strong selection pressure in sorghum, through the contrasting evolutionary processes of purifying and balancing selection. Such contrasting evolutionary processes have impacted ancestral genes more than species-specific genes. Fungal disease resistance hot-spots in the genome, with resistance against multiple pathogens, provides further insight into the mechanisms that cereals use in the “arms race” with rapidly evolving pathogens in addition to providing plant breeders with selection targets for fast-tracking the development of high performing varieties with more durable pathogen resistance.