8 resultados para distinct

em eResearch Archive - Queensland Department of Agriculture


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abacá mosaic virus (AbaMV) is related to members of the sugarcane mosaic virus subgroup of the genus Potyvirus. The ~2 kb 3′ terminal region of the viral genome was sequenced and, in all areas analysed, found to be most similar to Sugarcane mosaic virus (SCMV) and distinct from Johnsongrass mosaic virus (JGMV), Maize dwarf mosaic virus (MDMV) and Sorghum mosaic virus (SrMV). Cladograms of the 3′ terminal region of the NIb protein, the coat protein core and the 3′ untranslated region showed that AbaMV clustered with SCMV, which was a distinct clade and separate from JGMV, MDMV and SrMV. The N-terminal region of the AbaMV coat protein had a unique amino acid repeat motif different from those previously published for other strains of SCMV. The first experimental transmission of AbaMV from abacá (Musa textilis) to banana (Musa sp.), using the aphid vectors Rhopalosiphum maidis and Aphis gossypii, is reported. Polyclonal antisera for the detection of AbaMV in western blot assays and ELISA were prepared from recombinant coat protein expressed in E. coli. A reverse transcriptase PCR diagnostic assay, with microtitre plate colourimetric detection, was developed to discriminate between AbaMV and Banana bract mosaic virus, another Musa-infecting potyvirus. Sequence data, host reactions and serological relationships indicate that AbaMV should be considered a distinct strain of SCMV, and the strain designation SCMV-Ab is suggested.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A recent study using multilocus sequence typing (MLST) of Burkholderia pseudomallei isolates found a sequence type (ST60) to be common to both Thailand and Australia, contradicting earlier studies showing complete distinction between isolates from these regions. The ST60 isolates reportedly from Australia had been obtained for MLST from United Kingdom and U.S. collections. We have located and characterized the original Australian isolates; they were collected in 1983, and they are neither ST60 nor B. pseudomallei isolates. The B. pseudomallei MLST database has been corrected, and there is no ST common to isolates verified as obtained from Australia or from Thailand.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The partial gene sequencing of the matrix (M) protein from seven clinical isolates of bovine parainfluenza virus type 3 (BPIV-3), and the complete sequencing of a representative isolate (Q5592) was completed in this study. Nucleotide sequence analysis was initiated because of the failure of in-house BPIV-3 RT-PCR methods to yield expected products for four of the isolates. Phylogenetic reconstructions based on the nucleotide sequences for the M-protein and the entire genome, using all of the available BPIV-3 nucleotide sequences, demonstrated that there were two distinct BPIV-3 genotypes (BPIV-3a and BPIV-3b). These newly identified genotypes have implications for the development of BPIV-3 molecular detection methods and may also impact on BPIV-3 vaccine formulations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The two rust fungi, Ravenelia acaciae-arabicae and R. evansii, were both found on Acacia nilotica subsp. indica in southern (Tamil Nadu) and northern (Gujarat) India. R. acaciae-arabicae has been often incorrectly synonymised with R. evansii, although each has distinctive urediniospores, viz. echinulate in R. acaciae-arabicae and verruculose in R. evansii. Both species are re-described and illustrated from fresh specimens collected in India. Herbarium specimens of R. evansii from South Africa, including the holotype, were also examined. The difficulty in connecting different anamorphic spore stages to either of these teleomorphic rusts is highlighted by the presence of similar aecidia on plants of A. robusta infected with R. evansii in South Africa and on A. nilotica subsp. indica infected with R. acaciae-arabicae in India. It is not known whether these aecidial rusts represent the same species, nor is it known if they represent an aecidial stage of either R. acaciae-arabicae, R. evansii or other rusts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Agriculture is facing enormous challenges to feed a growing population in the face of rapidly evolving pests and pathogens. The rusts, in particular, are a major pathogen of cereal crops with the potential to cause large reductions in yield. Improving stable disease resistance is an on-going major and challenging focus for many plant breeding programs, due to the rapidly evolving nature of the pathogen. Sorghum is a major summer cereal crop that is also a host for a rust pathogen which occurs in almost all sorghum growing areas of the world, causing direct and indirect yield losses in sorghum worldwide, however knowledge about its genetic control is still limited. In order to further investigate this issue, QTL and association mapping methods were implemented to study rust resistance in three bi-parental populations and an association mapping set of elite breeding lines in different environments. Results: In total, 64 significant or highly significant QTL and 21 suggestive rust resistance QTL were identified representing 55 unique genomic regions. Comparisons across populations within the current study and with rust QTL identified previously in both sorghum and maize revealed a high degree of correspondence in QTL location. Negative phenotypic correlations were observed between rust, maturity and height, indicating a trend for both early maturing and shorter genotypes to be more susceptible to rust. Conclusions: The significant amount of QTL co-location across traits, in addition to the consistency in the direction of QTL allele effects, has provided evidence to support pleiotropic QTL action across rust, height, maturity and stay-green, supporting the role of carbon stress in susceptibility to rust. Classical rust resistance QTL regions that did not co-locate with height, maturity or stay-green QTL were found to be significantly enriched for the defence-related NBS-encoding gene family, in contrast to the lack of defence-related gene enrichment in multi-trait effect rust resistance QTL. The distinction of disease resistance QTL hot-spots, enriched with defence-related gene families from QTL which impact on development and partitioning, provides plant breeders with knowledge which will allow for fast-tracking varieties with both durable pathogen resistance and appropriate adaptive traits.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Australian lungfish is a unique living representative of an ancient dipnoan lineage, listed as ‘vulnerable’ to extinction under Australia’s Environment Protection and Biodiversity Conservation Act 1999. Historical accounts indicate this species occurred naturally in two adjacent river systems in Australia, the Burnett and Mary. Current day populations in other rivers are thought to have arisen by translocation from these source populations. Early genetic work detected very little variation and so had limited power to answer questions relevant for management including how genetic variation is partitioned within and among sub-populations. In this study, we use newly developed microsatellite markers to examine samples from the Burnett and Mary Rivers, as well as from two populations thought to be of translocated origin, Brisbane and North Pine. We test whether there is significant genetic structure among and within river drainages; assign putatively translocated populations to potential source populations; and estimate effective population sizes. Eleven polymorphic microsatellite loci genotyped in 218 individuals gave an average within-population heterozygosity of 0.39 which is low relative to other threatened taxa and for freshwater fishes in general. Based on FST values (average over loci = 0.11) and STRUCTURE analyses, we identify three distinct populations in the natural range, one in the Burnett and two distinct populations in the Mary. These analyses also support the hypothesis that the Mary River is the likely source of translocated populations in the Brisbane and North Pine rivers, which agrees with historical published records of a translocation event giving rise to these populations. We were unable to obtain bounded estimates of effective population size, as we have too few genotype combinations, although point estimates were low, ranging from 29 - 129. We recommend that, in order to preserve any local adaptation in the three distinct populations that they be managed separately.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diseases caused by Tobacco streak virus (TSV) have resulted in significant crop losses in sunflower and mung bean crops in Australia. Two genetically distinct strains from central Queensland, TSV-parthenium and TSV-crownbeard, have been previously described. They share only 81% total-genome nucleotide sequence identity and have distinct major alternative hosts, Parthenium hysterophorus (parthenium) and Verbesina encelioides (crownbeard). We developed and used strain-specific multiplex Polymerase chain reactions (PCRs) for the three RNA segments of TSV-parthenium and TSV-crownbeard to accurately characterise the strains naturally infecting 41 hosts species. Hosts included species from 11 plant families, including 12 species endemic to Australia. Results from field surveys and inoculation tests indicate that parthenium is a poor host of TSV-crownbeard. By contrast, crownbeard was both a natural host of, and experimentally infected by TSV-parthenium but this infection combination resulted in non-viable seed. These differences appear to be an effective biological barrier that largely restricts these two TSV strains to their respective major alternative hosts. TSV-crownbeard was seed transmitted from naturally infected crownbeard at a rate of between 5% and 50% and was closely associated with the geographical distribution of crownbeard in central Queensland. TSV-parthenium and TSV-crownbeard were also seed transmitted in experimentally infected ageratum (Ageratum houstonianum) at rates of up to 40% and 27%, respectively. The related subgroup 1 ilarvirus, Ageratum latent virus, was also seed transmitted at a rate of 18% in ageratum which is its major alternative host. Thrips species Frankliniella schultzei and Microcephalothrips abdominalis were commonly found in flowers of TSV-affected crops and nearby weed hosts. Both species readily transmitted TSV-parthenium and TSV-crownbeard. The results are discussed in terms of how two genetically and biologically distinct TSV strains have similar life cycle strategies in the same environment.