10 resultados para disease free survival
em eResearch Archive - Queensland Department of Agriculture
Resumo:
In 2001, an incursion of Mycosphaerella fijiensis, the causal agent of black Sigatoka, was detected in Australia's largest commercial banana growing region, the Tully Banana Production Area in North Queensland. An intensive surveillance and eradication campaign was undertaken which resulted in the reinstatement of the disease-free status for black Sigatoka in 2005. This was the first time black Sigatoka had ever been eradicated from commercial plantations. The success of the eradication campaign was testament to good working relationships between scientists, growers, crop monitors, quarantine regulatory bodies and industry. A key contributing factor to the success was the deployment of a PCR-based molecular diagnostic assay, developed by the Cooperative Research Centre for Tropical Plant Protection (CRCTPP). This assay complemented morphological identification and allowed high throughput diagnosis of samples facilitating rapid decision-making during the eradication campaign. This paper describes the development and successful deployment of molecular diagnostics for black Sigatoka. Shortcomings in the gel-based assay are discussed and the advantages of highly specific real-time PCR assays, capable of differentiating between Mycosphaerella fijiensis, Mycosphaerella musicola and Mycosphaerella eumusae are outlined. Real-time assays may provide a powerful diagnostic tool for applications in surveillance, disease forecasting and resistance testing for Sigatoka leaf spot diseases.
Resumo:
Sweetpotato is a major food crop in Papua New Guinea, with about 2.9 million tonnes grown each year. But sweetpotato is prone to pests and diseases, particularly viruses, which can significantly reduce yields. Because there are no varieties known to be resistant to viruses, the next best solution is to produce planting material that is free from infection, and to make this readily available to growers. This manual is aimed at researchers and technicians, and describes how to test for sweetpotato viruses and to keep vines free from infection. The methods described should help locals in PNG and other Pacific nations produce disease-free planting material for sweetpotato and other root and tuber crops.
Resumo:
A key driver of Australian sweetpotato productivity improvements and consumer demand has been industry adoption of disease-free planting material systems. On a farm isolated from main Australian sweetpotato areas, virus-free germplasm is annually multiplied, with subsequent 'pathogen-tested' (PT) sweetpotato roots shipped to commercial Australian sweetpotato growers. They in turn plant their PT roots into specially designated plant beds, commencing in late winter. From these beds, they cut sprouts as the basis for their commercial fields. Along with other intense agronomic practices, this system enables Australian producers to achieve worldRSQUOs highest commercial yields (per hectare) of premium sweetpotatoes. Their industry organisation, ASPG (Australian Sweetpotato Growers Inc.), has identified productivity of mother plant beds as a key driver of crop performance. Growers and scientists are currently collaborating to investigate issues such as catastrophic plant beds losses; optimisation of irrigation and nutrient addition; rapidity and uniformity of initial plant bed harvests; optimal plant bed harvest techniques; virus re-infection of plant beds; and practical longevity of plant beds. A survey of 50 sweetpotato growers in Queensland and New South Wales identified a substantial diversity in current plant bed systems, apparently influenced by growing district, scale of operation, time of planting, and machinery/labour availability. Growers identified key areas for plant bed research as: optimising the size and grading specifications of PT roots supplied for the plant beds; change in sprout density, vigour and performance through sequential cuttings of the plant bed; optimal height above ground level to cut sprouts to maximise commercial crop and plant bed performance; and use of structures and soil amendments in plant bed systems. Our ongoing multi-disciplinary research program integrates detailed agronomic experiments, grower adaptive learning sites, product quality and consumer research, to enhance industry capacity for inspired innovation and commercial, sustainable practice change.
Resumo:
Campylobacter infection is the most frequently reported notifiable food-borne disease in humans in Australia. Our studies investigated the persistence of Campylobacter spp. in or on darkling beetles (Alphitobius diaperinus) and their larvae. Our results in analyses with chickens confirm that, unless very short turnaround times are used (<72 h), beetles colonized in one production cycle (i.e., one batch of chickens) are most unlikely to still be colonized during the next cycle of chickens.
Resumo:
A dense population of Pimelea trichostachya plants (Family Thymelaeaceae) in pasture poisoned a horse herd in southern inland Queensland in October-November 2005. Plant density was 2 to 45 g wet weight/m2 (mean 16 g/m2) from 5 to 69 plants/m2 (mean 38 plants/m2) representing 3 to 20% (mean 9%) of the volume of pasture on offer. Ten of 35 mares, fillies and geldings were affected. Clinical signs were loss of body weight, profound lethargy, serous nasal discharge, severe watery diarrhoea and subcutaneous oedema of the intermandibular space, chest and ventral midline. Pathological findings were anaemia, leucocytopenia, hypoproteinaemia, dilatation of the right ventricle of the heart, dilated hepatic portal veins and periportal hepatic sinusoids (peliosis hepatis), alimentary mucosal hyperaemia and oedema of mesenteric lymph nodes. Cattle grazing the same pasture were affected by Pimelea poisoning simultaneously. Removal of the horses to Pimelea-free pasture initiated recovery. The one other incident of this syndrome, previously only recognised in cattle in Australia, occurred in horses, in South Australia in 2002, with access to a dense Pimelea simplex population.
Resumo:
Fiji leaf gall, caused the Fiji disease virus (genus Fijivirus, family Reoviridae, FDV), is a serious disease of sugarcane, Saccharum officinarum L., in Australia and several other Asia-Pacific countries. In Australia FDV is transmitted only by the planthopper Perkinsiella saccharicida Kirkaldy (Hemiptera: Delphacidae), in a propagative manner. Successful transmission of FDV by single planthoppers confined to individual virus free plants is highly variable, even under controlled conditions. The research reported here addresses two possible sources of this variation: 1) gender, wing form, and life stage of the planthopper; and 2) genotype of the source plant. The acquisition of FDV by macropterous males, macropterous females, brachypterous females, and nymphs of P. saccharicida from infected plants was investigated using reverse transcription-polymerase chain reaction to diagnose FDV infection in the vector. The proportion of individuals infected with FDV was not statistically related to life stage, gender, or adult wing form of the vector. The acquisition of FDV by P. saccharicida from four cultivars of sugarcane was compared to assess the influence of plant genotype on acquisition. Those planthopper populations reared on diseased 'NCo310' plants had twice as many infected planthoppers as those reared on 'Q110', 'WD1', and 'WD2'. Therefore, variation in FDV acquisition in this system is not the result of variation in the gender, wing form and life stage of the P. saccharicida vectors. The cultivar used as the source plant to rear vector populations does affect the proportion of infected planthoppers in a population.
Resumo:
Much research in understanding plant diseases has been undertaken, but there has been insufficient attention given to dealing with coordinated approaches to preventing and managing diseases. A global management approach is essential to the long-term sustainability of banana production. This approach would involve coordinated surveys, capacity building in developing countries, development of disease outbreak contingency plans and coordinated quarantine awareness, including on-line training in impact risk assessment and web-based diagnostic software. Free movement of banana plants and products between some banana-producing countries is causing significant pressure on the ability to manage diseases in banana. The rapid spread of Fusarium oxysporum f. sp. cubense 'tropical race 4' in Asia, bacterial wilts in Africa and Asia and black leaf streak [Mycosphaerella fijiensis] in Brazil and elsewhere are cases in point. The impact of these diseases is devastating, severely cutting family incomes and jeopardising food security around the globe. Agreements urgently need to be reached between governments to halt the movement of banana plants and products between banana-producing countries before it is too late and global food security is irreparably harmed. Black leaf streak, arguably the most serious banana disease, has become extremely difficult to control in commercial plantations in various parts of the world. Sometimes in excess of 50 fungicide sprays have to be applied each year. Disease eradication and effective disease control is not possible because there is no control of disease inoculum in non-commercial plantings in these locations. Additionally, there have been enormous sums of money invested in international banana breeding programmes over many years only to see the value of hybrid products lost too soon. 'Goldfinger' (AAAB, syn. 'FHIA-01'), for example, has recently been observed severely affected by black leaf streak in Samoa. Resistant cultivars alone cannot be relied upon in the fight against this disease. Real progress in control may only come when the local communities are engaged and become actively involved in regional programmes. Global recommendations are long overdue and urgently needed to help ensure the long-term sustainable utilisation of the products of the breeding programmes.
Resumo:
In this study, nasal swabs taken from multiparous sows at weaning time or from sick pigs displaying symptoms of Glasser's disease from farms in Australia [date not given] were cultured and analysed by polymerase chain reaction (PCR). Within each genotype detected on a farm, representative isolates were serotyped by gel diffusion (GD) testing or indirect haemagglutination (IHA) test. Isolates which did not react in any of the tests were regarded as non-typable and were termed serovar NT. Serovars 1, 5, 12, 13 and 14 were classified as highly pathogenic; serovars 2, 4 and 15 being moderately pathogenic; serovar 8 being slightly pathogenic and serovars 3, 6, 7, 9 and 11 being non-pathogenic. Sows were inoculated with the strain of Haemophilus parasuis (serovars 4, 6 and 9 from Farms 1, 2 and 4, respectively) used for controlled challenge 3 and 5 weeks before farrowing. Before farrowing the sows were divided into control and treatment groups. Five to seven days after birth, the piglets of the treatment group were challenged with a strain from the farm which had were used to vaccinate the sows. The effectiveness of the controlled exposure was evaluated by number of piglets displaying clinical signs possibly related to infection, number of antibiotic treatments and pig mortality. Nasal swabs of sick pigs were taken twice a week to find a correlation to infection. A subsample of pigs was weighed after leaving the weaning sheds. The specificity of a realtime PCR amplifying the infB gene was evaluated with 68 H. parasuis isolates and 36 strains of closely related species. 239 samples of DNA from tissues and fluids of 16 experimentally challenged animals were also tested with the realtime PCR, and the results compared with culture and a conventional PCR. The farm experiments showed that none of the controlled challenge pigs showed any signs of illness due to Glasser's disease, although the treatment groups required more antibiotics than the controls. A total of 556 H. parasuis isolates were genotyped, while 150 isolates were serotyped. H. parasuis was detected on 19 of 20 farms, including 2 farms with an extensive history of freedom from Glasser's disease. Isolates belonging to serovars regarded as potentially pathogenic were obtained from healthy pigs at weaning on 8 of the 10 farms with a history of Glasser's disease outbreaks. Sampling 213 sick pigs yielded 115 isolates, 99 of which belonged to serovars that were either potentially pathogenic or of unknown pathogenicity. Only 16 isolates from these sick pigs were of a serovar known to be non-pathogenic. Healthy pigs also had H. parasuis, even on farms free of Glasser's disease. The realtime PCR gave positive results for all 68 H. parasuis isolates and negative results for all 36 non-target bacteria. When used on the clinical material from experimental infections, the realtime PCR produced significantly more positive results than the conventional PCR (165 compared to 86).
Resumo:
Quambalaria spp. are eucalypt leaf and shoot pathogens of growing global importance, yet virtually nothing is known regarding the manner in which they infect and colonize their hosts. A study of the infection process of Q. pitereka and Q.eucalypti on Corymbia and Eucalyptus species was thus undertaken using light, scanning and transmission electron microscopy after artificial inoculation. Conidial germination was triggered when relative humidity levels exceeded 90% and commenced within 2 h in the presence of free water. Light reduced germination but did not prevent germination from occurring. Conidial germination and hyphal growth occurred on the upper and lower leaf surfaces with penetration occurring via the stomata or wounds on the leaf surface or juvenile stems. There was no evidence of direct penetration of the host. Following penetration through the stomata, Q. pitereka and Q. eucalypti hyphae grew only intercellularly without the formation of haustoria or interaction apparatus, which is characteristic of the order Microstromatales. Instead, the presence of an interaction zone is demonstrated in this paper. Conidiophores arose through stomatal openings producing conidia 7 days after infection.
Resumo:
The endemic non-pathogenic Australian rabbit calicivirus RCV-A1 is known to provide some cross protection to lethal infection with the closely related Rabbit Haemorrhagic Disease Virus (RHDV). Despite its obvious negative impacts on viral biocontrol of introduced European rabbits in Australia, little is known about the extent and mechanisms of this cross protection. In this study 46 rabbits from a colony naturally infected with RCV-A1 were exposed to RHDV. Survival rates and survival times did not correlate with titres of serum antibodies specific to RCV-A1 or cross reacting to RHDV, but were instead influenced by the time between infection with the two viruses, demonstrating for the first time that the cross protection to lethal RHDV infection is transient. These findings are an important step towards a better understanding of the complex interactions of co-occurring pathogenic and non-pathogenic lagoviruses.