2 resultados para digital systems
em eResearch Archive - Queensland Department of Agriculture
Resumo:
Internal browning disorders, including brown fleck (BF), in potato (Solanum tuberosum) tubers greatly reduce tuber quality, but the causes are not well understood. This is due, in part, to the highly variable data provided by visual value-based rating systems. A digital imaging technique was developed to quantify accurately the incidence of internal browning in potato tubers. Images of tuber sections were scanned using a flatbed scanner and digitally enhanced to highlight tuber BF lesions, and the area of affected tissue calculated using pixel quantification software. Digital imaging allowed for the determination of previously unused indices of the incidence and severity of internal browning in potato tubers. Statistical analysis of the comparison between digitally derived and visual-rating BF data from a glasshouse experiment showed that digital data greatly improved the delineation of treatment effects. The F-test probability was further improved through square root or logarithmic data transformations of the digital data, but not of the visual-rating data. Data from a field experiment showed that the area of tuber affected by BF and the number of small BF lesions increased with time and with increase in tuber size. The results from this study indicate that digital imaging of internal browning disorders of potato tubers holds much promise in determining their causes that heretofore have proved elusive.
Resumo:
This study examines the application of digital ecosystems concepts to a biological ecosystem simulation problem. The problem involves the use of a digital ecosystem agent to optimize the accuracy of a second digital ecosystem agent, the biological ecosystem simulation. The study also incorporates social ecosystems, with a technological solution design subsystem communicating with a science subsystem and simulation software developer subsystem to determine key characteristics of the biological ecosystem simulation. The findings show similarities between the issues involved in digital ecosystem collaboration and those occurring when digital ecosystems interact with biological ecosystems. The results also suggest that even precise semantic descriptions and comprehensive ontologies may be insufficient to describe agents in enough detail for use within digital ecosystems, and a number of solutions to this problem are proposed.