11 resultados para differential fault attack
em eResearch Archive - Queensland Department of Agriculture
Resumo:
When investigating strategies for Helicoverpa armigera (Hubner) control, it is important to understand oviposition behaviour. Cotton (Gossypium hirsutum) was sown into standing wheat (Triticum astivum L.) stubble in a closed arena to investigate the effect of stubble on H. armigera moth behaviour and oviposition. Infrared cameras were used to track moths and determine whether stubble acted as a physical barrier or provided camouflage to cotton plants, thereby reducing oviposition. Searching activity was observed to peak shortly before dawn (03:00 and 04:00 h) and remained high until just after dawn (4 h window). Moths spent more time resting on cotton plants than spiralling above them, and the least time flying across the arena. While female moths spent more time searching for cotton plants growing in wheat stubble, the difference in oviposition was not significant. As similar numbers of eggs were laid on cotton plants with stubble (3.5/plant SE +/- 0.87) and without stubble (2.5/plant SE +/- 0.91), wheat stubble does not appear to provide camouflage to cotton plants. There was no significant difference in the location of eggs deposited on cotton plants with and without stubble, although more eggs were laid on the tops of cotton leaves in wheat stubble. As the spatial and temporal distribution of eggs laid on the cotton plant is a crucial component of population stability, eggs laid on the upper side of leaves on cotton plants may be more prone to fatalities caused by environmental factors such as wind and rain. Therefore, although stubble did not influence the number of eggs laid, it did affect their distribution on the plant, which may result in increased mortality of eggs on cotton plants sown into standing wheat stubble.
Resumo:
We provide the first evidence of a small-headed fly planidium (first instar larva; Diptera: Acroceridae) associated with a whirligig mite (Acari: Acariformes: Prostigmata: Anystina: Anystidae) in Baltic amber. This fossil is surprising as parasitic nematodes are the only metazoans known to successfully attack acariform mites, and Acroceridae are believed to be host-restricted parasitoids of spiders. The fossil corroborates a previously published, but widely dismissed, paper that first reported parasitism of parasitengone mites by acrocerid planidia. The possible natural history implications of this find are discussed.
Differential expression profiling of components associated with exoskeletal hardening in crustaceans
Resumo:
Background: Exoskeletal hardening in crustaceans can be attributed to mineralization and sclerotization of the organic matrix. Glycoproteins have been implicated in the calcification process of many matrices. Sclerotization, on the other hand, is catalysed by phenoloxidases, which also play a role in melanization and the immunological response in arthropods. Custom cDNA microarrays from Portunus pelagicus were used to identify genes possibly associated with the activation pathways involved in these processes. Results: Two genes potentially involved in the recognition of glycosylation, the C-type lectin receptor and the mannose-binding protein, were found to display molt cycle-related differential expression profiles. C-type lectin receptor up-regulation was found to coincide with periods associated with new uncalcified cuticle formation, while the up-regulation of mannose-binding protein occurred only in the post-molt stage, during which calcification takes place, implicating both in the regulation of calcification. Genes presumed to be involved in the phenoloxidase activation pathway that facilitates sclerotization also displayed molt cycle-related differential expression profiles. Members of the serine protease superfamily, trypsin-like and chymotrypsin-like, were up-regulated in the intermolt stage when compared to post-molt, while trypsin-like was also up-regulated in pre-molt compared to ecdysis. Additionally, up-regulation in pre- and intermolt stages was observed by transcripts encoding other phenoloxidase activators including the putative antibacterial protein carcinin-like, and clotting protein precursor-like. Furthermore, hemocyanin, itself with phenoloxidase activity, displayed an identical expression pattern to that of the phenoloxidase activators, i.e. up-regulation in pre- and intermolt. Conclusion: Cuticle hardening in crustaceans is a complex process that is precisely timed to occur in the post-molt stage of the molt cycle. We have identified differential expression patterns of several genes that are believed to be involved in biomineralization and sclerotization and propose possible regulatory mechanisms for these processes based on their expression profiles, such as the potential involvement of C-type lectin receptors and mannose binding protein in the regulation of calcification.
Resumo:
Establish a DNA-based typing scheme that allows the allocation of strains of Campylobacter to types that are host specific and/or non-host specific.
Resumo:
Rhipicephalus micro plus is an important bovine ectoparasite, widely distributed in tropical and subtropical regions of the world causing large economic losses to the cattle industry. Its success as an ectoparasite is associated with its capacity to disarm the antihemostatic and anti-inflammatory reactions of the host. Serpins are protease inhibitors with an important role in the modulation of host-parasite interactions. The cDNA that encodes for a R. microplus serpin was isolated by RACE and subsequently cloned into the pPICZ alpha A vector. Sequence analysis of the cDNA and predicted amino acid showed that this cDNA has a conserved serpin domain. B- and T-cell epitopes were predicted using bioinformatics tools. The recombinant R. microplus serpin (rRMS-3) was secreted into the culture media of Pichia pastoris after methanol induction at 0.2 mg l(-1) qRT-PCR expression analysis of tissues and life cycle stages demonstrated that RMS-3 was mainly expressed in the salivary glands of female adult ticks. Immunological recognition of the rRMS-3 and predicted B-cell epitopes was tested using tick-resistant and susceptible cattle sera. Only sera from tick-resistant bovines recognized the B-cell epitope AHYNPPPPIEFT (Seq7). The recombinant RMS-3 was expressed in P. pastoris, and ELISA screening also showed higher recognition by tick-resistant bovine sera. The results obtained suggest that RMS-3 is highly and specifically secreted into the bite site of R. microplus feeding on tick-resistant bovines. Capillary feeding of semi-engorged ticks with anti-AHYNPPPPIEFT sheep sera led to an 81.16% reduction in the reproduction capacity of R. microplus. Therefore, it is possible to conclude that R. microplus serpin (RMS-3) has an important role in the host-parasite interaction to overcome the immune responses in resistant cattle. (C) 2012 Elsevier GmbH. All rights reserved.
Resumo:
Plant secondary chemistry mediates the ability of herbivores to locate, accept and survive on potential host plants. We examined the relationship between attack by the cerambycid beetle Phoracantha solida and the chemistry of the secondary phloem (inner bark) of two differentially attacked plantation forestry taxa, Corymbia variegata and its hybrid with C. torelliana. We hypothesised that this differential rate of attack may have to do with differences in secondary chemistry between the taxa. We found differences in the bark chemistry of the taxa, both with respect to phenolic compounds and terpenoids. We could detect no difference between bored and non-bored C. variegata trees (the less preferred, but co-evolved host). Hybrid trees were not different in levels of total polyphenols, flavanols or terpenes according to attack status, but acetone extracts were significantly different between bored and non-bored trees. We propose that variations in the bark chemistry explain the differential attack rate between C. variegata and the hybrid hosts.
Resumo:
Phoracantha longicorn beetles are endemic to Australia, and some species have become significant pests of eucalypts worldwide, yet little is known about their host plant interactions and factors influencing tree susceptibility in Australia. Here, we investigate the host relationships of Phoracantha solida (Blackburn, 1894) on four eucalypt taxa (one pure species and three hybrid families), examining feeding site physical characteristics including phloem thickness, density, and moisture content, and host tree factors such as diameter, height, growth, taper, and survival. We also determine the cardinal and vertical (within-tree) and horizontal (between-tree) spatial distribution of borers. Fewer than 10% of P. solida attacks were recorded from the pure species (Corymbia citriodora subsp. variegate (Hook)), and this taxon also showed the highest survival, phloem thickness, relative growth rate, and bark:wood area. For the two most susceptible taxa, borer severity was negatively correlated with moisture content, and positively related to phloem density. Borers were nonrandomly and nonuniformly distributed within trees, and were statistically aggregated in 32% of plots. More attacks were situated on the northern side of the tree than the other aspects, and most larvae fed within the lower 50 cm of the bole, with attack height positively correlated with severity. Trees with borers had more dead neighbors, and more bored neighbors, than trees without borers, while within plots, borer incidence and severity were positively correlated. Because the more susceptible taxa overlapped with less susceptible taxa for several physical tree factors, the role of primary and secondary chemistries in determining host suitability needs to be investigated. Nevertheless, taxon, moisture content, phloem density, tree size, and mortality of neighboring trees appeared the most important physical characteristics influencing host suitability for P. solida at this site.
Resumo:
A recently developed spot form of blotch differential set of 16 barley lines was tested for reaction response to 60 Pyrenophora teres f. maculata isolates from geographically disperse barley crops of Australia. Twelve barley lines (Arimont, Barque, Chebec, CI5286, CI5791, CI9214, CII6150, Dairokkaku, Esperance Orge 289, Galleon, Keel, Skiff, Torrens and TR250) provided differential response between the isolates. The susceptible controls Gairdner and Kombar provided indication of isolate virulence or avirulence. Abundant pathogenic diversity was revealed with 33 designated pathotypes, some of which related to geographic region. AFLP analysis also revealed abundant diversity with each of the isolates representing a unique genotype and one isolate that contained both AFLP bands unique to P. teres f. maculata and P. teres f. teres, the cause of spot form and net form of net blotch respectively, suggesting that sexual recombination between the net form and spot form isolates may have occurred naturally in the field.
Resumo:
Background: Mango fruits contain a broad spectrum of phenolic compounds which impart potential health benefits; their biosynthesis is catalysed by enzymes in the phenylpropanoid-flavonoid (PF) pathway. The aim of this study was to reveal the variability in genes involved in the PF pathway in three different mango varieties Mangifera indica L., a member of the family Anacardiaceae: Kensington Pride (KP), Irwin (IW) and Nam Doc Mai (NDM) and to determine associations with gene expression and mango flavonoid profiles. Results: A close evolutionary relationship between mango genes and those from the woody species poplar of the Salicaceae family (Populus trichocarpa) and grape of the Vitaceae family (Vitis vinifera), was revealed through phylogenetic analysis of PF pathway genes. We discovered 145 SNPs in total within coding sequences with an average frequency of one SNP every 316bp. Variety IW had the highest SNP frequency (one SNP every 258bp) while KP and NDM had similar frequencies (one SNP every 369bp and 360bp, respectively). The position in the PF pathway appeared to influence the extent of genetic diversity of the encoded enzymes. The entry point enzymes phenylalanine lyase (PAL), cinnamate 4-mono-oxygenase (C4H) and chalcone synthase (CHS) had low levels of SNP diversity in their coding sequences, whereas anthocyanidin reductase (ANR) showed the highest SNP frequency followed by flavonoid 3'-hydroxylase (F3'H). Quantitative PCR revealed characteristic patterns of gene expression that differed between mango peel and flesh, and between varieties. Conclusions: The combination of mango expressed sequence tags and availability of well-established reference PF biosynthetic genes from other plant species allowed the identification of coding sequences of genes that may lead to the formation of important flavonoid compounds in mango fruits and facilitated characterisation of single nucleotide polymorphisms between varieties. We discovered an association between the extent of sequence variation and position in the pathway for up-stream genes. The high expression of PAL, C4H and CHS genes in mango peel compared to flesh is associated with high amounts of total phenolic contents in peels, which suggest that these genes have an influence on total flavonoid levels in mango fruit peel and flesh. In addition, the particularly high expression levels of ANR in KP and NDM peels compared to IW peel and the significant accumulation of its product epicatechin gallate (ECG) in those extracts reflects the rate-limiting role of ANR on ECG biosynthesis in mango. © 2015 Hoang et al.
Resumo:
Brassica napus is one of the most important oil crops in the world, and stem rot caused by the fungus Sclerotinia sclerotiorum results in major losses in yield and quality. To elucidate resistance genes and pathogenesis-related genes, genome-wide association analysis of 347 accessions was performed using the Illumina 60K Brassica SNP (single nucleotide polymorphism) array. In addition, the detached stem inoculation assay was used to select five highly resistant (R) and susceptible (S) B. napus lines, 48 h postinoculation with S. sclerotiorum for transcriptome sequencing. We identified 17 significant associations for stem resistance on chromosomes A8 and C6, five of which were on A8 and 12 on C6. The SNPs identified on A8 were located in a 409-kb haplotype block, and those on C6 were consistent with previous QTL mapping efforts. Transcriptome analysis suggested that S. sclerotiorum infection activates the immune system, sulphur metabolism, especially glutathione (GSH) and glucosinolates in both R and S genotypes. Genes found to be specific to the R genotype related to the jasmonic acid pathway, lignin biosynthesis, defence response, signal transduction and encoding transcription factors. Twenty-four genes were identified in both the SNP-trait association and transcriptome sequencing analyses, including a tau class glutathione S-transferase (GSTU) gene cluster. This study provides useful insight into the molecular mechanisms underlying the plant's response to S. sclerotiorum.