13 resultados para development impact

em eResearch Archive - Queensland Department of Agriculture


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Laboratory experiments were conducted to determine the efficacy of spinosad (a biopesticide), chlorpyrifos-methyl (an organophosphorus compound (OP)) and s-methoprene (a juvenile hormone analogue) applied alone and in binary combinations against five stored-grain beetles in wheat. There were three strains of Rhyzopertha dominica, and one strain each of Sitophilus oryzae, Tribolium castaneum, Oryzaephilus surinamensis and Cryptolestes ferrugineus. These strains were chosen to represent a range of possible resistant genotypes, exhibiting resistance to organophosphates, pyrethroids or methoprene. Treatments were applied at rates that are registered or likely to be registered in Australia. Adults were exposed to freshly treated wheat for 2 weeks, and the effects of treatments on mortality and reproduction were determined. No single protectant or protectant combination controlled all insect strains, based on the criterion of >99% reduction in the number of live F1 adults relative to the control. The most effective combinations were spinosad at 1 mg kg-1+chlorpyrifos-methyl at 10 mg kg-1 which controlled all strains except for OP-resistant O. surinamensis, and chlorpyrifos-methyl at 10 mg kg-1+s-methoprene at 0.6 mg kg-1 which controlled all strains except for methoprene-resistant R. dominica. The results of this study demonstrate the difficulty in Australia, and potentially other countries which use protectants, of finding protectant treatments to control a broad range of pest species in the face of resistance development.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

These rootstock and nitrogen fertiliser studies confirmed that rootstock race can significantly affect the development of postharvest disease and mineral nutrient accumulation in Hass avocado fruit. When Hass (Guatemalan race) was grafted to seedling Velvick (West Indian race) rootstock, the severity and incidence of anthracnose in fruit were significantly reduced by up to 64 and 37%, respectively, compared with seedling Duke 6 (Mexican race) rootstock. Stem-end rot was also influenced by rootstock in some seasons, and significant reductions (up to 87%) in the severity and incidence of stem-end rot were recorded in Hass fruit from Velvick compared with Duke 6 rootstock trees. These improvements in postharvest diseases were associated with significantly lower concentrations of nitrogen and potassium, higher concentrations of calcium and magnesium, lower ratios of nitrogen:calcium and higher ratios of calcium + magnesium:potassium in Hass leaves and fruit from Velvick compared with Duke 6 rootstock trees. Altering the rate of nitrogen fertiliser had minimal impact on postharvest disease development. However, in one season, reducing the rate of nitrogen fertiliser to nil significantly reduced the concentration of nitrogen in the fruit skin, decreased the nitrogen:calcium ratio and significantly reduced the severity and incidence of anthracnose in Hass fruit from both Velvick and Duke 6 rootstock trees. The form of nitrogen fertiliser (ammonium compared with nitrate) applied to the trees did not significantly affect the postharvest disease susceptibility of Hass avocado fruit on either Velvick or Duke 6 rootstock. The Guatemalan race rootstocks, Anderson 8 and Anderson 10, were also found to be superior to the Mexican race rootstock, Parida 1, for reducing anthracnose severity. This again, was associated with a better balance of mineral nutrients (significantly lower nitrogen:calcium and higher calcium + magnesium:potassium ratios) in the fruit. This rootstock effect, however, was only observed in the first season of a 3-year experiment, possibly because of a better balance between vegetative growth and fruit production in Parida 1 in the latter two seasons. Significant positive correlations between anthracnose severity and fruit skin nitrogen:calcium ratios were evident across all experiments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The project was successful across all objectives, making demonstrable progress in support of establishing tropical lobster farming in Indonesia. The industry remains most active in Lombok where lobster seed resources are most abundant, and impact has been greatest there. Nevertheless, project activities have established activity and interest in lobster farming in other provinces and particularly Aceh and, South and Southeast Sulawesi. The project met all of its 23 milestones with the exception of publishing a production manual, which has been held over until 2017. For several milestone activities, further research will be required to build on the outcomes generated and reach practical commercial outputs. The research was instigated to address the opportunity to establish a significant small-holder based industry in Indonesia that could alleviate poverty in coastal communities. The premise was that such an industry – lobster farming, had been established in Vietnam, with ACIAR involvement, and it could be replicated in Indonesia where the availability of necessary basic requirements had been confirmed through a previous ACIAR project focussed in Vietnam (FIS/2001/058). The broad aim was to assess, develop and expand the resources of naturally settling lobster seed (puerulus), and develop grow out of those seed to meet export market demand. This was to be achieved by adapting and transferring to Indonesia technology from Vietnam, where lobster farming had become a successful industry producing 1,500 tonnes of export quality lobsters valued at $A100 million.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Queensland's hardwood plantation industry is producing increasing volumes of sawlog, veneer and poles. Wood quality can sometimes be impaired in some plantation hardwoods when the growing trees are attacked by insect borers. Susceptibility to borer damage varies with the species as well as site conditions or location. The risk model developed from this project will enable the plantation industry to match tree species with appropriate growing conditions in Queensland.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Diseases remain a significant impediment to the achievement of maximum yield potential of pulses (chickpea, peanut and mungbean) and sunflowers in the GRDC northern region. This project worked closely with public and private breeding programs to identify sources of resistance to the major diseases of pulses and sunflower that dominate in the region. Through varied surveillance activities, a watching brief on pulse and sunflower diseases was maintained and a timely and appropriate response was made to several significant disease outbreaks. Information on the biology and management of diseases was extended to clients in a wide variety of ways.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Few tools are available to assist graziers, land administrators and financiers in making objective grazing capacity decisions on Australian rangelands, despite existing knowledge regarding stocking rate theory and the impact of stocking rates on land condition. To address this issue a model for objectively estimating 'safe' grazing capacities on individual grazing properties in south-west Queensland was developed. The method is based on 'safe' levels of utilisation (15%-20%) by domestic livestock of average annual forage grown for each land system on a property. Average annual forage grown (kglha) was calculated as the product of the rainfall use efficiency (kglhdmm) and average annual rainfall (mm) for a land system. This estimate included the impact of tree and shrub cover on forage production. The 'safe' levels of forage utilisation for south- west Queensland pastures were derived from the combined experience of (1) re-analysis of the results of grazing trials, (2) reaching a consensus on local knowledge and (3) examination of existing grazing practice on 'benchmark' grazing properties. We recognise the problems in defining, determining and using grazing capacity values, but consider that the model offers decision makers a tool that can be used to assess the grazing capacity of individual properties.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To quantify the impact that planting indigenous trees and shrubs in mixed communities (environmental plantings) have on net sequestration of carbon and other environmental or commercial benefits, precise and non-biased estimates of biomass are required. Because these plantings consist of several species, estimation of their biomass through allometric relationships is a challenging task. We explored methods to accurately estimate biomass through harvesting 3139 trees and shrubs from 22 plantings, and collating similar datasets from earlier studies, in non-arid (>300mm rainfallyear-1) regions of southern and eastern Australia. Site-and-species specific allometric equations were developed, as were three types of generalised, multi-site, allometric equations based on categories of species and growth-habits: (i) species-specific, (ii) genus and growth-habit, and (iii) universal growth-habit irrespective of genus. Biomass was measured at plot level at eight contrasting sites to test the accuracy of prediction of tonnes dry matter of above-ground biomass per hectare using different classes of allometric equations. A finer-scale analysis tested performance of these at an individual-tree level across a wider range of sites. Although the percentage error in prediction could be high at a given site (up to 45%), it was relatively low (<11%) when generalised allometry-predictions of biomass was used to make regional- or estate-level estimates across a range of sites. Precision, and thus accuracy, increased slightly with the level of specificity of allometry. Inclusion of site-specific factors in generic equations increased efficiency of prediction of above-ground biomass by as much as 8%. Site-and-species-specific equations are the most accurate for site-based predictions. Generic allometric equations developed here, particularly the generic species-specific equations, can be confidently applied to provide regional- or estate-level estimates of above-ground biomass and carbon. © 2013 Elsevier B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many banana producing regions around the world experience climate variability as a result of seasonal rainfall and temperature conditions, which result in sub-optimal conditions for banana production. This can create periods of plant stress which impact on plant growth, development and yields. Furthermore, diseases such as Fusarium wilt caused by Fusarium oxysporum f. sp. cubense, can become more predominant following periods of environmental stress, particularly for many culturally significant cultivars such as Ducasse (synonym Pisang Awak) (Musa ABB). The aim of this experiment was to determine if expression of symptoms of Fusarium wilt of bananas in a susceptible cultivar could be explained by environmental conditions, and if soil management could reduce the impact of the disease and increase production. An experiment was established in an abandoned commercial field of Ducasse bananas with a high incidence of Fusarium wilt. Vegetated ground cover was maintained around the base of banana plants and compared with plants grown in bare soil for changes in growth, production and disease symptoms. Expression of Fusarium wilt was found to be a function of water stress potential and the heat unit requirement for bananas. The inclusion of vegetative ground cover around the base of the banana plants significantly reduced the severity and incidence of Fusarium wilt by 20 % and altered the periods of symptom development. The growth of bananas and development of the bunch followed the accumulated heat units, with a greater number of bunched plants evident during warmer periods of the year. The weight of bunches harvested in a second crop cycle was increased when banana plants were grown in areas with vegetative ground cover, with fewer losses of plants due to Fusarium wilt.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

* Stay-green is an integrated drought adaptation trait characterized by a distinct green leaf phenotype during grain filling under terminal drought. We used sorghum (Sorghum bicolor), a repository of drought adaptation mechanisms, to elucidate the physiological and genetic mechanisms underpinning stay-green. * Near-isogenic sorghum lines (cv RTx7000) were characterized in a series of field and managed-environment trials (seven experiments and 14 environments) to determine the influence of four individual stay-green (Stg1–4) quantitative trait loci (QTLs) on canopy development, water use and grain yield under post-anthesis drought. * The Stg QTL decreased tillering and the size of upper leaves, which reduced canopy size at anthesis. This reduction in transpirational leaf area conserved soil water before anthesis for use during grain filling. Increased water uptake during grain filling of Stg near-isogenic lines (NILs) relative to RTx7000 resulted in higher post-anthesis biomass production, grain number and yield. Importantly, there was no consistent yield penalty associated with the Stg QTL in the irrigated control. * These results establish a link between the role of the Stg QTL in modifying canopy development and the subsequent impact on crop water use patterns and grain yield under terminal drought.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Radiant spring frosts occurring during reproductive developmental stages can result in catastrophic yield loss for wheat producers. To better understand the spatial and temporal variability of frost, the occurrence and impact of frost events on rain-fed wheat production was estimated across the Australian wheatbelt for 1957–2013 using a 0.05 ° gridded weather data set. Simulated yield outcomes at 60 key locations were compared with those for virtual genotypes with different levels of frost tolerance. Over the last six decades, more frost events, later last frost day, and a significant increase in frost impact on yield were found in certain regions of the Australian wheatbelt, in particular in the South-East and West. Increasing trends in frost-related yield losses were simulated in regions where no significant trend of frost occurrence was observed, due to higher mean temperatures accelerating crop development and causing sensitive post-heading stages to occur earlier, during the frost risk period. Simulations indicated that with frost-tolerant lines the mean national yield could be improved by up to 20 through (i) reduced frost damage (~10 improvement) and (ii) the ability to use earlier sowing dates (adding a further 10 improvement). In the simulations, genotypes with an improved frost tolerance to temperatures 1 °C lower than the current 0 °C reference provided substantial benefit in most cropping regions, while greater tolerance (to 3 °C lower temperatures) brought further benefits in the East. The results indicate that breeding for improved reproductive frost tolerance should remain a priority for the Australian wheat industry, despite warming climates.