6 resultados para desorption

em eResearch Archive - Queensland Department of Agriculture


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The leaching of phosphorus (P) within soils can be a limiting consideration for the sustainable operation of intensive livestock enterprises. Sorption curves are widely used to assist estimation of P retention, though the effect of effluent constituents on their accuracy is not well understood. We conducted a series of P-sorption-desorption batch experiments with an Oxic Haplustalf (soil 1), Haplusterts (soils 2 and 3), and a Natrustalf (soil 4). Phosphorus sources included effluent, orthophosphate-P in a matrix replicating the effluent's salt constituents (the reference solution), and an orthophosphate-P solution. Treated soils were incubated for up to 193 days before sequential desorption extraction. Effluent constituents, probably the organic or particulate components, temporarily increased the vulnerability of sorbed-P to desorption. The increase in vulnerability was removed by 2-113 days of incubation (25 degrees C). Despite vigorous extraction for 20 consecutive days, some P sorbed as part of the treatments of soils 1 and 2 was not desorbed. The increased vulnerability due to effluent constituents lasted a maximum of about one cropping season and, for all other treatments, adsorption curves overestimated vulnerability to desorption. Therefore, adsorption curves provide a conservative estimate of vulnerability to desorption where effluent is used in continued crop production in these soils.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sulfuryl fluoride (SF) has been developed as a fumigant for control of insect pests in stored grain. However, there is very limited information on the sorption behaviour of this fumigant, which can be critical to its bioactivity, application and potential for residues. We undertook a comprehensive laboratory study of the sorption and desorption of SF by wheat (bread and durum), flour and semolina at 15, 25 and 35 °C, moisture contents 12% and 15%, and concentration × time combinations at CT = 1500 mgh/L (4.167 mg/L × 360 h, 8.928 mg/L × 168 h and 31.25 mg/L × 48 h). At each dosage, sorption rate increased as commodity temperature and moisture content increased. The highest rates of sorption occurred at 35 °C and 15% m.c., and lowest rates at 15 °C and 12% m.c., and the rate was independent of initial concentration. Sorption followed first order reaction kinetics described by the exponential decay equation, Ct = C0·e−k*t, where k is the sorption rate constant. The most important factors determining the rate of sorption were commodity particle size (exposed surfaces) and temperature. Little sorption of fumigant occurred within the first 24 h whereas longer fumigation times resulted in significant sorption. Unbound SF was rapidly lost from the commodity upon aeration with no further desorption detected under any of the test conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Land application of piggery effluent (containing urine, faeces, water, and wasted feed) is under close scrutiny as a potential source of water resource contamination with phosphorus (P). This paper investigates two case studies of the impact of long-term piggery effluent-P application to soil. A Natrustalf (Sodosol) at P1 has received a net load of 3700 kg effluent P/ha over 19 years. The Haplustalf (Dermosol) selected (P2) has received a net load of 310 000 kg P/ha over 30 years. Total, bicarbonate extractable, and soluble P forms were determined throughout the soil profiles for paired (irrigated and unirrigated) sites at P1 and P2, as well as P sorption and desorption characteristics. Surface bicarbonate (PB, 0 - 0.05 m depth) and dilute CaCl2 extractable molybdate-reactive P (PC) have been significantly elevated by effluent irrigation (P1: PB unirrigated 23±1, irrigated 290±6; PC unirrigated 0.03±0.00, irrigated 23.9±0.2. P2: PB unirrigated 72±48, irrigated 3950±1960; PC unirrigated 0.7±0.0, irrigated 443±287 mg P/kg; mean±s.d.). Phosphorus enrichment to 1.5 m, detected as PB, was observed at P2. Elevated concentrations of CaCl2 extractable organic P forms (POC; estimated by non-molybdate reactive P in centrifuged supernatants) were observed from the soil surface of P1 to a depth of 0.4 m. Despite the extent of effluent application at both of these sites, only P1 displayed evidence of significant accumulation of POC. The increase in surface soil total P (0 - 0.05 m depth) due to effluent irrigation was much greater than laboratory P sorption (>25 times for P1; >57 times for P2) for a comparable range of final solution concentrations (desorption extracts ranged from 1-5 mg P/L for P1 and 50-80 mg P/L for P2). Precipitation of sparingly soluble P phases was evidenced in the soils of the P2 effluent application area.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Our work focuses on the application of mesoporous silica nanoparticles as a combined delivery vehicle and adjuvant for vaccine applications. Here we present results using the viral protein, E2, from bovine viral diarrhoea virus (BVDV). BVDV infection occurs in the target species of cattle and sheep herds worldwide and is therefore of economic importance. E2 is a major immunogenic determinant of BVDV and is an ideal candidate for the development of a subunit based nanovaccine using mesoporous silica nanoparticles. Hollow type mesoporous silica nanoparticles with surface amino functionalisation (termed HMSA) were characterised and assessed for adsorption and desorption of E2. A codon-optimised version of the E2 protein (termed Opti-E2) was produced in Escherichia coli. HMSA (120 nm) had an adsorption capacity of 80 [small mu ]g Opti-E2 per mg HMSA and once bound E2 did not dissociate from the HMSA. Immunisation studies in mice with a 20 [small mu ]g dose of E2 adsorbed to 250 [small mu ]g HMSA was compared to immunisation with Opti-E2 (50 [small mu ]g) together with the traditional adjuvant Quillaja saponaria Molina tree saponins (QuilA, 10 [small mu ]g). The humoral responses with the Opti-E2/HMSA nanovaccine although slightly lower than those obtained for the Opti-E2 + QuilA group demonstrated that HMSA particles are an effective adjuvant that stimulated E2-specific antibody responses. Importantly the cell-mediated immune responses were consistently high in all mice immunised with Opti-E2/HMSA nanovaccine formulation. Therefore we have shown the Opti-E2/HMSA nanoformulation acts as an excellent adjuvant that gives both T-helper 1 and T-helper 2 mediated responses in a small animal model. This study has provided proof-of-concept towards the development of an E2 subunit nanoparticle based vaccine.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An observational study was undertaken to measure odour and dust (PM10 and PM2.5) emission rates and identify non-methane volatile organic compounds (NMVOCs) and odorants in the exhaust air from two tunnel-ventilated layer-chicken sheds that were configured with multi-tiered cages and manure belts. The study sites were located in south-eastern Queensland and the West Gippsland region of Victoria, Australia. Samples were collected in summer and winter on sequential days across the manure-belt cleaning cycle. Odour emissions ranged from 58 to 512 ou/s per 1000 birds (0.03-0.27 ou/s.kg) and dust emission rates ranged 0.014-0.184 mg/s per 1000 birds for PM10 and 0.001-0.190 mg/s per 1000 birds for PM2.5. Twenty NMVOCs were identified, including three that were also identified as odorants using thermal desorption-gas chromatography-mass spectrometry/olfactometry analysis. Odour emission rates were observed to vary with the amount of manure accumulation on the manure belts, being lowest 2-4 days after removing manure. Odour emission rates were also observed to vary with diurnal and seasonal changes in ventilation rate. Dust emissions were observed to increase with ventilation rate but not with manure accumulation. Some NMVOCs were identified at both farms and in different seasons whereas others were observed only at one farm or in one season, indicating that odorant composition was influenced by farm-specific practices and season.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Characterisation of a number of key wood properties utilising ‘state of the art’ tools was achieved for four commercial Australian hardwood species: Corymbia citriodora, Eucalyptus pilularis, Eucalyptus marginata and Eucalyptus obliqua. The wood properties were measured for input into microscopic (cellular level) and macroscopic (board level) vacuum drying models currently under development. Morphological characterisation was completed using a combination of ESEM, optical microscopy and a custom vector-based image analysis software. A clear difference in wood porosity, size, wall thickness and orientation was evident between species. Wood porosity was measured using a combination of fibre and vessel porosity. A highly sensitive microbalance and scanning laser micrometres were used to measure loss of moisture content in conjunction with directional shrinkage on micro-samples of E. obliqua to investigate the validity of measuring collapse-free shrinkage in very thin sections. Collapse-free shrinkage was characterised, and collapse propensity was verified when testing thicker samples. Desorption isotherms were calculated for each species using wood–water relations data generated from shrinkage experiments. Fibre geometry and wood shrinkage anisotropy were used to explain the observed difficulty in drying of the different species in terms of collapse and drying stress-related degrade.