3 resultados para depth image
em eResearch Archive - Queensland Department of Agriculture
Resumo:
Seagrass meadows across north-eastern Australia, survive a range of environmental conditions in coastal bays, reefs, estuarine and deepwater habitats through adaptation of a range of structural, morphological and physiological features. The aim of this study was to investigate the influence of spatial features (habitat type, site and depth) and photon flux on the photosynthetic performance of 11 tropical seagrass species. Pulse amplitude modulated (PAM) fluorometry was used to generate rapid light curves from which measures of maximal electron transport rate (ETRmax), photosynthetic efficiency (?), saturating irradiance (Ek) and effective quantum yield (?F/Fm?) were derived. The amount of light absorbed by leaves (absorption factor) was also determined for each population. In intertidal habitats many seagrass species exhibited typical sun-type responses with a close coupling of both ETRmax and Ek with photon flux. Photosynthetic performance ranged from minima in Thalassodendron ciliatum to maxima in Syringodium isoetifolium. The absence of a coupling between photosynthetic performance and photon flux in subtidal populations was most likely due to highly variable light climates and possible light attenuation, and hence the photo-biology of estuarine and deepwater seagrasses exhibited photosynthetic responses indicative of light limitation. In contrast seagrass species from shallow reef and coastal habitats for the most part exhibited light saturation characteristics. Of all the variables examined ETRmax, Ek and ?F/Fm? were most responsive to changing light climates and provide reliable physiological indicators of real-time photosynthetic performance of tropical seagrasses under different light conditions.
Resumo:
In south-eastern Queensland, Australia, sorghum planted in early spring usually escapes sorghum midge, Stenodiplosis sorghicola, attack. Experiments were conducted to better understand the role of winter diapause in the population dynamics of this pest. Emergence patterns of adult midge from diapausing larvae on the soil surface and at various depths were investigated during spring to autumn of 1987/88–1989/90. From 1987/88 to 1989/90, 89%, 65% and 98% of adult emergence, respectively, occurred during November and December. Adult emergence from larvae diapausing on the soil surface was severely reduced due to high mortality attributed to surface soil temperatures in excess of 40°C, with much of this mortality occurring between mid-September and mid-October. Emergence of adults from the soil surface was considerably delayed in the 1988/89 season compared with larvae buried at 5 or 10 cm which had similar emergence patterns for all three seasons. In 1989/90, when a 1-cm-deep treatment was included, there was a 392% increase in adult emergence from this treatment compared with deeper treatments. Some diapausing larvae on the surface did not emerge at the end of summer in only 1 year (1989/90), when 28.0% of the larvae on the surface remained in diapause, whereas only 0.8% of the buried larvae remained in diapause. We conclude that the pattern of emergence explains why spring plantings of sorghum in south-eastern Queensland usually escape sorghum midge attack.
Resumo:
The freshwater sawfish (Pristis microdon) is a critically endangered elasmobranch. Ontogenetic changes in the habitat use of juvenile P. microdon were studied using acoustic tracking in the Fitzroy River, Western Australia. Habitat partitioning was significant between 0+ (2007 year class) and larger 1+ (2006 year class) P. microdon. Smaller 0+ fish generally occupied shallower water (<0.6 m) compared with 1+ individuals, which mainly occurred in depths >0.6 m. Significant differences in hourly depth use were also revealed. The depth that 1+ P. microdon occupied was significantly influenced by lunar phase with these animals utilising a shallower and narrower depth range during the full moon compared with the new moon. This was not observed in 0+ individuals. Habitat partitioning was likely to be related to predator avoidance, foraging behaviours, and temperature and/or light regimes. The occurrence of 1+ P. microdon in deeper water may also result from a need for greater depths in which to manoeuvre. The present study demonstrates the utility of acoustic telemetry in monitoring P. microdon in a riverine environment. These results demonstrate the need to consider the habitat requirements of different P. microdon cohorts in the strategic planning of natural resources and will aid in the development of management strategies for this species.