31 resultados para conservation biology, forest ecology
em eResearch Archive - Queensland Department of Agriculture
Resumo:
The Mobulidae are zooplanktivorous elasmobranchs comprising two recognized species of manta rays (Manta spp.) and nine recognized species of devil rays (Mobula spp.). They are found circumglobally in tropical, subtropical and temperate coastal waters. Although mobulids have been recorded for over 400 years, critical knowledge gaps still compromise the ability to assess the status of these species. On the basis of a review of 263 publications, a comparative synthesis of the biology and ecology of mobulids was conducted to examine their evolution, taxonomy, distribution, population trends, movements and aggregation, reproduction, growth and longevity, feeding, natural mortality and direct and indirect anthropogenic threats. There has been a marked increase in the number of published studies on mobulids since c. 1990, particularly for the genus Manta, although the genus Mobula remains poorly understood. Mobulid species have many common biological characteristics although their ecologies appear to be species-specific, and sometimes region-specific. Movement studies suggest that mobulids are highly mobile and have the potential to rapidly travel large distances. Fishing pressure is the major threat to many mobulid populations, with current levels of exploitation in target fisheries unlikely to be sustainable. Advances in the fields of population genetics, acoustic and satellite tracking, and stable-isotope and fatty-acid analyses will provide new insights into the biology and ecology of these species. Future research should focus on the uncertain taxonomy of mobulid species, the degree of overlap between their large-scale movement and human activities such as fisheries and pollution, and the need for management of inter-jurisdictional fisheries in developing nations to ensure their long-term sustainability. Closer collaboration among researchers worldwide is necessary to ensure standardized sampling and modelling methodologies to underpin global population estimates and status.
Resumo:
Fresh meat baits containing sodium fluoroacetate (1080) are widely used for controlling feral pigs in Queensland, but there is a potential poisoning risk to non-target species. This study investigated the non-target species interactions with meat bait by comparing the time until first approach, investigation, sample and consumption, and whether dying bait green would reduce interactions. A trial assessing species interactions with undyed bait was completed at Culgoa Floodplain National Park, Queensland. Meat baits were monitored for 79 consecutive days with camera traps. Of 40 baits, 100% were approached, 35% investigated (moved) and 25% sampled, and 25% consumed. Monitors approached (P < 0.05) and investigated (P < 0.05) the bait more rapidly than pigs or birds, but the median time until first sampling was not significantly different (P > 0.05), and did not consume any entire bait. A trial was conducted at Whetstone State Forest, southern Queensland, with green-dyed and undyed baits monitored for eight consecutive days with cameras. Of 60 baits, 92% were approached and also investigated by one or more non-target species. Most (85%) were sampled and 57% were consumed, with monitors having slightly more interaction with undyed baits than with green-dyed baits. Mean time until first approach and sample differed significantly between species groups (P = 0.038 and 0.007 respectively) with birds approaching sooner (P < 0.05) and monitors sampling later (P < 0.05) than other (unknown) species (P > 0.05). Undyed bait was sampled earlier (mean 2.19 days) than green-dyed bait (2.7 days) (P = 0.003). Data from the two trials demonstrate that many non-target species regularly visit and sample baits. The use of green-dyed baits may help reduce non-target uptake, but testing is required to determine the effect on attractiveness to feral pigs. Further research is recommended to quantify the benefits of potential strategies to reduce the non-target uptake of meat baits to help improve the availability of bait to feral pigs.
Resumo:
Sectors of the forest plantation industry in Australia are set to expand in the near future using species or hybrids of the spotted gums (Corymbia, Section Politaria). Plantations of these taxa have already been introduced across temperate and subtropical Australia, representing locally exotic introductions from native stands in Queensland and New South Wales. A literature review was undertaken to provide insights into the potential for pollen-mediated gene flow from these plantations into native populations. Three factors suggest that such gene flow is likely; (1) interspecific hybridisation within the genus has frequently been recorded, including between distantly related species from different sections, (2) apparent high levels of vertebrate pollinator activity may result in plantation pollen being moved over hundreds of kilometres, (3) much of the plantation estate is being established among closely related taxa and therefore few barriers to gene flow are expected. Across Australia, 20 of the 100 native Corymbia taxa were found to have regional level co-occurrence with plantations. These were located most notably within regions of north-east New South Wales and south-east Queensland, however, co-occurrence was also found in south-west Western Australia and eastern Victoria. The native species found to have co-occurrence were then assessed for the presence of reproductive barriers at each step in the process of gene flow that may reduce the number of species at risk even further. The available data suggest three risk categories exist for Corymbia. The highest risk was for gene flow from plantations of spotted gums to native populations of spotted gums. This was based on the expected limited existence of pre- and post-zygotic barriers, substantial long-distance pollen dispersal and an apparent broad period of flowering in Corymbia citriodora subsp. variegata plantations. The following risk category focussed on gene flow from Corymbia torelliana × C. c. variegata hybrid plantations into native C. c. variegata, as the barriers associated with the production and establishment of F1 hybrids have been circumvented. For the lowest risk category, Corymbia plantations may present a risk to other non-spotted gum species, however, further investigation of the particular cross-combinations is required. A list of research directions is provided to better quantify these risks. Empirical data will need to be combined within a risk assessment framework that will not only estimate the likelihood of exotic gene flow, but also consider the conservation status/value of the native populations. In addition, the potential impacts of pollen flow from plantations will need to be weighed up against their various economic and environmental benefits.
Resumo:
Runoff and sediment loss from forest roads were monitored for a two-year period in a Pinus plantation in southeast Queensland. Two classes of road were investigated: a gravelled road, which is used as a primary daily haulage route for the logging area, and an ungravelled road, which provides the main access route for individual logging compartments and is intensively used as a haulage route only during the harvest of these areas (approximately every 30 years). Both roads were subjected to routine traffic loads and maintenance during the study. Surface runoff in response to natural rainfall was measured and samples taken for the determination of sediment and nutrient (total nitrogen, total phosphorus, dissolved organic carbon and total iron) loads from each road. Results revealed that the mean runoff coefficient (runoff depth/rainfall depth) was consistently higher from the gravelled road plot with 0.57, as compared to the ungravelled road with 0.38. Total sediment loss over the two-year period was greatest from the gravelled road plot at 5.7 t km−1 compared to the ungravelled road plot with 3.9 t km−1. Suspended solids contributed 86% of the total sediment loss from the gravelled road, and 72% from the ungravelled road over the two years. Nitrogen loads from the two roads were both relatively constant throughout the study, and averaged 5.2 and 2.9 kg km−1 from the gravelled and ungravelled road, respectively. Mean annual phosphorus loads were 0.6 kg km−1 from the gravelled road and 0.2 kg km−1 from the ungravelled road. Organic carbon and total iron loads increased in the second year of the study, which was a much wetter year, and are thought to reflect the breakdown of organic matter in roadside drains and increased sediment generation, respectively. When road and drain maintenance (grading) was performed runoff and sediment loss were increased from both road types. Additionally, the breakdown of the gravel road base due to high traffic intensity during wet conditions resulted in the formation of deep (10 cm) ruts which increased erosion. The Water Erosion Prediction Project (WEPP):Road model was used to compare predicted to observed runoff and sediment loss from the two road classes investigated. For individual rainfall events, WEPP:Road predicted output showed strong agreement with observed values of runoff and sediment loss. WEPP:Road predictions for annual sediment loss from the entire forestry road network in the study area also showed reasonable agreement with the extrapolated observed values.
Resumo:
Blackwood (Acacia melanoxylon R. Br.) is a valuable leguminous cabinetwood species which is commonly found as a canopy or subcanopy tree in a broad range of mixed-species moist forests on tablelands and coastal escarpments in eastern Australia. This paper reports on the competitive light environment of a commercially valuable multi-species regrowth forest in NW Tasmania, in order to define some of the functional interactions and competitive dynamics of these stands. Comparative observations were made of the internal forest light environment in response to small-gap silvicultural treatments, in a young regenerative mix of three codominant tree species. Light measurements were made during periods of maximum external irradiance of the regrowth Eucalyptus obliqua/A. melanoxylon forest canopy at age 10.5 years. This was at a time of vigourous stand development, 4.5 years following the application of three experimental silvicultural treatments whose effects were observed in comparison with an untreated canopy sample designed as a control. Minimal irradiance was observed within and beneath the dense subcanopy of the native nurse species (Pomaderris apetala) which closely surrounds young blackwood regeneration. Unlike current plantation nurse systems, the dense foliage of the native broadleaved Pomaderris all but eliminated direct side-light and low-angle illumination of the young blackwood, from the beginning of tree establishment. The results demonstrated that retention of these densely stocked native codominants effectively suppressed both size and frequency of blackwood branches on the lower bole, through effective and persistent interception of sunlight. Vigorous young blackwood crowns later overtopped the codominant nurse species, achieving a predictable height of branch-free bole. This competitive outcome offers a valuable tool for management of blackwood crown dynamics, stem form and branch habit through manipulation of light environment in young native regrowth systems. Results demonstrate that effective self-pruning in the lower bole of blackwood is achieved through a marked reduction in direct and diffuse sunlight incident on the lower crown, notably to less than 10-15% of full sunlight intensity during conditions of maximum insolation. The results also contain insights for the improved design of mixed-species plantation nurse systems using these or functionally similar species' combinations. Based on evidence presented here for native regrowth forest, plantation nurse systems for blackwood will need to achieve 85-90% interception of external side-light during early years of tree development if self-pruning is to emulate the results achieved in the native nurse system.
Resumo:
The river sharks (genus Glyphis) are a small group of poorly known sharks occurring in tropical rivers and estuarine waters across northern Australia, south-east Asia and the subcontinent. The taxonomy of the genus has long been unclear due to very few individuals having been caught and examined, resulting in a paucity of data regarding their distribution, biology and ecology. Only recently has attention focussed on the two Australian species, G. glyphis and G. garricki. This study is a result of a rare opportunity to collate the few samples that have been collected from these species and the bull shark Carcharhinus leucas, which shares an overlapping range. These samples were analysed using the DNA barcoding approach (cox1 mitochondrial gene), compared with six other species of carcharhinids and evaluated in light of the current taxonomic classification. Nine species-specific nucleotide differences were found between G. glyphis and G. garricki and no intra-specific variation provides strong support for the separation into distinct species. Significant differences were also observed at the inter-generic level, with Glyphis forming a distinct clade from Carcharhinus. This study provides the basis for future molecular studies required to better address conservation issues confronting G. glyphis and G. garricki in Australia.
Resumo:
Promotion of better procedures for releasing undersize fish, advocacy of catch-and-release angling, and changing minimum legal sizes are increasingly being used as tools for sustainable management of fish stocks. However without knowing the proportion of released fish that survive, the conservation value of any of these measures is uncertain. We developed a floating vertical enclosure to estimate short-term survival of released line-caught tropical and subtropical reef-associated species, and used it to compare the effectiveness of two barotrauma-relief procedures (venting and shotline releasing) on red emperor (Lutjanus sebae). Barotrauma signs varied with capture depth, but not with the size of the fish. Fish from the greatest depths (40-52 m) exhibited extreme signs less frequently than did those from intermediate depths (30-40 m), possibly as a result of swim bladder gas being vented externally through a rupture in the body wall. All but two fish survived the experiment, and as neither release technique significantly improved short-term survival of the red emperor over non-treatment we see little benefit in promoting either venting or shotline releasing for this comparatively resilient species. Floating vertical enclosures can improve short-term post-release mortality estimates as they overcome many problems encountered when constraining fish in submerged cages.
Resumo:
The layout of this second edition follows that of the first, though the content has been substantially rewritten to reflect 10 years of research and development, as well as the emergence of new pest species. Chapter 1 presents an overview, from a somewhat entomological perspective, of tropical forestry in its many guises. Chapters 2, 3 and 4 then discuss the 'pure' biology and ecology of tropical insects and their co-evolved relationships with the trees and forests in which they live. Chapter 5 is necessarily the largest chapter in the book, looking in detail at a selection of major pest species from all over the tropical world. Chapters 6, 7, 8 and 9 then discuss the theory and practice of insect pest management, starting at the fundamental planning stage, before any seeds hit the soil. Nursery management and stand management were considered in Chapters 7 and 8. Chapter 9 covers the topics of forest health surveillance, quarantine and forest invasive species, topics which again have significance at all stages of forestry but for convenience are presented after nursery and forest management. This, in fact, we attempt to do in the final chapter, Chapter 10, which combines most of the previous nine chapters in examples illustrating the concept of integrated pest management. ©CABI Publishing CABI Publishing
Resumo:
Land-use change can have a major influence on soil organic carbon (SOC) and above-ground C pools. We assessed a change from native vegetation to introduced Pinus species plantations on C pools using eight paired sites. At each site we determined the impacts on 0–50 cm below-ground (SOC, charcoal C, organic matter C, particulate organic C, humic organic C, resistant organic C) and above-ground (litter, coarse woody debris, standing trees and woody understorey plants) C pools. In an analysis across the different study sites there was no significant difference (P > 0.05) in SOC or above-ground tree C stocks between paired native vegetation and pine plantations, although significant differences did exist at specific sites. SOC (calculated based on an equivalent soil mass basis) was higher in the pine plantations at two sites, higher in the native vegetation at two sites and did not differ for the other four sites. The site to site variation in SOC across the landscape was far greater than the variation observed with a change from native vegetation to introduced Pinus plantation. Differences between sites were not explained by soil type, although tree basal area was positively correlated with 0–50 cm SOC. In fact, in the native vegetation there was a significant linear relationship between above-ground biomass and SOC that explained 88.8% of the variation in the data. Fine litter C (0–25 mm diameter) tended to be higher in the pine forest than in the adjacent native vegetation and was significantly higher in the pine forest at five of the eight paired sites. Total litter C (0–100 mm diameter) increased significantly with plantation age (R2 = 0.64). Carbon stored in understorey woody plants (2.5–10 cm DBH) was higher in the native vegetation than in the adjacent pine forest. Total site C varied greatly across the study area from 58.8 Mg ha−1 at a native heathland site to 497.8 Mg ha−1 at a native eucalypt forest site. Our findings suggest that the effects of change from native vegetation to introduced Pinus sp. forest are highly site-specific and may be positive, negative, or have no influence on various C pools, depending on local site characteristics (e.g. plantation age and type of native vegetation).
Resumo:
Recolonisation and succession in a multi-species tropical seagrass meadow was examined by creating gaps (50×50 cm) in the meadow and manipulating the supply of sexual and asexual propagules. Measurements of leaf shoot density and estimates of above-ground biomass were conducted monthly to measure recovery of gaps between September 1995 and November 1997. Measurements of the seeds stored in the sediment (seed bank) and horizontal rhizome growth of colonising species were also conducted to determine their role in the recovery process. Asexual colonisation through horizontal rhizome growth from the surrounding meadow was the main mechanism for colonisation of gaps created in the meadow. The seed bank played no role in recolonisation of cleared plots. Total shoot density and above-ground biomass (all species pooled) of cleared plots recovered asexually to the level of the undisturbed controls in 10 and 7 months, respectively. There was some sexual recruitment into cleared plots where asexual colonisation was prevented but seagrass abundance (shoot density and biomass) did not reach the level of unmanipulated controls. Seagrass species did not appear to form seed banks despite some species being capable of producing long-lived seeds. The species composition of cleared plots remained different to the undisturbed controls throughout the 26-month experiment. Syringodium isoetifolium was a rapid asexual coloniser of disturbed plots and remained at higher abundances than in the control treatments for the duration of the study. S. isoetifolium had the fastest horizontal rhizome growth of species asexually colonising cleared plots (6.9 mm day−1). Halophila ovalis was the most successful sexual coloniser but was displaced by asexually colonising species. H. ovalis was the only species observed to produce fruits during the study. Small disturbances in the meadow led to long-term (>2 years) changes in community composition. This study demonstrated that succession in tropical seagrass communities was not a deterministic process. Variations in recovery observed for different tropical seagrass communities highlighted the importance of understanding life history characteristics of species within individual communities to effectively predict their response to disturbance. A reproductive strategy involving clonal growth and production of long-lived, locally dispersed seeds is suggested which may provide an evolutionary advantage to plants growing in tropical environments subject to temporally unpredictable major disturbances such as cyclones
Resumo:
Results from the humid tropics of Australia demonstrate that diverse plantations can achieve greater productivity than monocultures. We found that increases in both the observed species number and the effective species richness were significantly related to increased levels of productivity as measured by stand basal area or mean individual tree basal area. Four of five plantation species were more productive in mixtures with other species than in monocultures, offering on average, a 55% increase in mean tree basal area. A general linear model suggests that species richness had a significant effect on mean individual tree basal area when environmental variables were included in the model. As monoculture plantations are currently the preferred reforestation method throughout the tropics these results suggest that significant productivity and ecological gains could be made if multi-species plantations are more broadly pursued.
Resumo:
This study investigated whether mixed-species designs can increase the growth of a tropical eucalypt when compared to monocultures. Monocultures of Eucalyptus pellita (E) and Acacia peregrina (A) and mixtures in various proportions (75E:25A, 50E:50A, 25E:75A) were planted in a replacement series design on the Atherton Tablelands of north Queensland, Australia. High mortality in the establishment phase due to repeated damage by tropical cyclones altered the trial design. Effects of experimental designs on tree growth were estimated using a linear mixed-effects model with restricted maximum likelihood analysis (REML). Volume growth of individual eucalypt trees were positively affected by the presence of acacia trees at age 5 years and this effect generally increased with time up to age 10 years. However, the stand volume and basal area increased with increasing proportions of E. pellita, due to its larger individual tree size. Conventional analysis did not offer convincing support for mixed-species designs. Preliminary individual-based modelling using a modified Hegyi competition index offered a solution and an equation that indicates acacias have positive ecological interactions (facilitation or competitive reduction) and definitely do not cause competition like a eucalypt. These results suggest that significantly increased in growth rates could be achieved with mixed-species designs. This statistical methodology could enable a better understanding of species interactions in similarly altered experiments, or undesigned mixed-species plantations.
Resumo:
This study uses chlorophyll a fluorescence to examine the effect of environmentally relevant (1-4 h) exposures of thermal stress (35-45 [deg]C) on seagrass photosynthetic yield in seven tropical species of seagrasses. Acute response of each tropical seagrass species to thermal stress was characterised, and the capacity of each species to tolerate and recover from thermal stress was assessed. Two fundamental characteristics of heat stress were observed. The first effect was a decrease in photosynthetic yield (Fv / Fm) characterised by reductions in F and Fm'. The dramatic decline in Fv / Fm ratio, due to chronic inhibition of photosynthesis, indicates an intolerance of Halophila ovalis, Zostera capricorni and Syringodium isoetifolium to ecologically relevant exposures of thermal stress and structural alterations to the PhotoSystem II (PSII) reaction centres. The decline in Fm' represents heat-induced photoinhibition related to closure of PSII reaction centres and chloroplast dysfunction. The key finding was that Cymodocea rotundata, Cymodocea serrulata, Halodule uninervis and Thalassia hemprichii were more tolerant to thermal stress than H. ovalis, Z. capricorni and S. isoetifolium. After 3 days of 4 h temperature treatments ranging from 25 to 40 [deg]C, C. rotundata, C. serrulata and H. uninervis demonstrated a wide tolerance to temperature with no detrimental effect on Fv / Fm' qN or qP responses. These three species are restricted to subtropical and tropical waters and their tolerance to seawater temperatures up to 40 [deg]C is likely to be an adaptive response to high temperatures commonly occurring at low tides and peak solar irradiance. The results of temperature experiments suggest that the photosynthetic condition of all seagrass species tested are likely to suffer irreparable effects from short-term or episodic changes in seawater temperatures as high as 40-45 [deg]C. Acute stress responses of seagrasses to elevated seawater temperatures are consistent with observed reductions in above-ground biomass during a recent El Nino event.