8 resultados para clay rich
em eResearch Archive - Queensland Department of Agriculture
Resumo:
Twelve strains of Pseudomonas pseudomallei were isolated from the soil and water of a sheep paddock over a two-year period. The organism was recovered from the clay layer of the soil profile as well as from water that seeps into this layer during the "wet" season. Five isolates were obtained before the commencement of the "wet" season; environmental factors appear to play an important role in the survival of Ps. pseudomallei during the "dry" season. Lower isolation rates were recorded than those indicated by workers in southeast Asia and Iran.
Resumo:
The fate of nitrogen (N) applied in biosolids was investigated in a forage production system on an alluvial clay loam soil in south-eastern Queensland, Australia. Biosolids were applied in October 2002 at rates of 6, 12, 36, and 54dryt/ha for aerobically digested biosolids (AE) and 8, 16, 48, and 72dryt/ha for anaerobically digested biosolids (AN). Rates were based on multiples of the Nitrogen Limited Biosolids Application rate (0.5, 1, 3, and 4.5NLBAR) for each type of biosolid. The experiment included an unfertilised control and a fertilised control that received multiple applications of synthetic fertiliser. Forage sorghum was planted 1 week after biosolids application and harvested 4 times between December 2002 and May 2003. Dry matter production was significantly greater from the biosolids-treated plots (21-27t/ha) than from the unfertilised (16t/ha) and fertilised (18t/ha) controls. The harvested plant material removed an extra 148-488kg N from the biosolids-treated plots. Partial N budgets were calculated for the 1NLBAR and 4.5NLBAR treatments for each biosolids type at the end of the crop season. Crop removal only accounted for 25-33% of the applied N in the 1NLBAR treatments and as low as 8-15% with 4.5NLBAR. Residual biosolids N was predominantly in the form of organic N (38-51% of applied biosolids N), although there was also a significant proportion (10-23%) as NO3-N, predominantly in the top 0.90m of the soil profile. From 12 to 29% of applied N was unaccounted for, and presumed to be lost as gaseous nitrogen and/or ammonia, as a consequence of volatilisation or denitrification, respectively. In-season mineralisation of organic N in biosolids was 43-59% of the applied organic N, which was much greater than the 15% (AN)-25% (AE) expected, based on current NLBAR calculation methods. Excessive biosolids application produced little additional biomass but led to high soil mineral N concentrations that were vulnerable to multiple loss pathways. Queensland Guidelines need to account for higher rates of mineralisation and losses via denitrification and volatilisation and should therefore encourage lower application rates to achieve optimal plant growth and minimise the potential for detrimental impacts on the environment.
Resumo:
Negative potassium (K) balances in all broadacre grain cropping systems in northern Australia are resulting in a decline in the plant-available reserves of K and necessitating a closer examination of strategies to detect and respond to developing K deficiency in clay soils. Grain growers on the Red Ferrosol soils have increasingly encountered K deficiency over the last 10 years due to lower available K reserves in these soils in their native condition. However, the problem is now increasingly evident on the medium-heavy clay soils (Black and Grey Vertosols) and is made more complicated by the widespread adoption of direct drill cropping systems and the resulting strong strati. cation of available K reserves in the top 0.05-0.1 m of the soil pro. le. This paper reports glasshouse studies examining the fate of applied K fertiliser in key cropping soils of the inland Burnett region of south-east Queensland, and uses the resultant understanding of K dynamics to interpret results of field trials assessing the effectiveness of K application strategies in terms of K availability to crop plants. At similar concentrations of exchangeable K (K-exch), soil solution K concentrations and activity of K in the soil solution (AR(K)) varied by 6-7-fold between soil types. When K-exch arising from different rates of fertiliser application was expressed as a percentage of the effective cation exchange capacity (i.e. K saturation), there was evidence of greater selective adsorption of K on the exchange complex of Red Ferrosols than Black and Grey Vertosols or Brown Dermosols. Both soil solution K and AR(K) were much less responsive to increasing K-exch in the Black Vertosols; this is indicative of these soils having a high K buffer capacity (KBC). These contrasting properties have implications for the rate of diffusive supply of K to plant roots and the likely impact of K application strategies (banding v. broadcast and incorporation) on plant K uptake. Field studies investigating K application strategies (banding v. broadcasting) and the interaction with the degree of soil disturbance/mixing of different soil types are discussed in relation to K dynamics derived from glasshouse studies. Greater propensity to accumulate luxury K in crop biomass was observed in a Brown Ferrosol with a KBC lower than that of a Black Vertosol, consistent with more efficient diffusive supply to plant roots in the Ferrosol. This luxury K uptake, when combined with crops exhibiting low proportional removal of K in the harvested product (i.e. low K harvest index coarse grains and winter cereals) and residue retention, can lead to rapid re-development of stratified K profiles. There was clear evidence that some incorporation of K fertiliser into soil was required to facilitate root access and crop uptake, although there was no evidence of a need to incorporate K fertiliser any deeper than achieved by conventional disc tillage (i.e. 0.1-0.15 m). Recovery of fertiliser K applied in deep (0.25-0.3 m) bands in combination with N and P to facilitate root proliferation was quite poor in Red Ferrosols and Grey or Black Vertosols with moderate effective cation exchange capacity (ECEC, 25-35 cmol(+)/kg), was reasonable but not enough to overcome K deficiency in a Brown Dermosol (ECEC 11 cmol(+)/kg), but was quite good on a Black Vertosol (ECEC 50-60 cmol(+)/kg). Collectively, results suggest that frequent small applications of K fertiliser, preferably with some soil mixing, is an effective fertiliser application strategy on lighter clay soils with low KBC and an effective diffusive supply mechanism. Alternately, concentrated K bands and enhanced root proliferation around them may be a more effective strategy in Vertosol soils with high KBC and limited diffusive supply. Further studies to assess this hypothesis are needed.
Resumo:
An assessment of the relative influences of management and environment on the composition of floodplain grasslands of north-western New South Wales was made using a regional vegetation survey sampling a range of land tenures (e. g. private property, travelling stock routes and nature reserves). A total of 364 taxa belonging to 55 different plant families was recorded. Partitioning of variance with redundancy analysis determined that environmental variables accounted for a greater proportion (61.3%) of the explained variance in species composition than disturbance-related variables (37.6%). Soil type (and fertility), sampling time and rainfall had a strong influence on species composition and there were also east-west variations in composition across the region. Of the disturbance-related variables, cultivation, stocking rate and flooding frequency were all influential. Total, native, forb, shrub and subshrub richness were positively correlated with increasing time since cultivation. Flood frequency was positively correlated with graminoid species richness and was negatively correlated with total and forb species richness. Site species richness was also influenced by environmental variables (e. g. soil type and rainfall). Despite the resilience of these grasslands, some forms of severe disturbance (e. g. several years of cultivation) can result in removal of some dominant perennial grasses (e. g. Astrebla spp.) and an increase in disturbance specialists. A simple heuristic transitional model is proposed that has conceptual thresholds for plant biodiversity status. This knowledge representation may be used to assist in the management of these grasslands by defining four broad levels of community richness and the drivers that change this status.
Resumo:
In grassland reserves, managed disturbance is often necessary to maintain plant species diversity. We carried out experiments to determine the impact of fire, kangaroo grazing, mowing and disc ploughing on grassland species richness and composition in a nature reserve in semi-arid eastern Australia. Vegetation response was influenced by winter-spring drought after establishment of the experiments, but moderate rainfall followed in late summer-autumn. Species composition varied greatly between sampling times, and the variability due to rainfall differences between seasons and years was greater than the effects of fire, kangaroo grazing, mowing or disc ploughing. In the fire experiment, species richness and composition recovered more rapidly after spring than autumn burning. Species richness and composition were similar to control sites within 12 months of burning and mowing, suggesting that removal of the dominant grass canopy is unnecessary to enhance plant diversity. Two fires (separated by 3 years) and post-fire kangaroo grazing had only minor influence on species richness and composition. Even disc ploughing caused only a small reduction in native richness. The minor impact of ploughing was explained by the small areas that were ploughed, the once-off nature of the treatment, and the high degree of natural movement and cracking in these shrink-swell soils. Recovery of the composition and richness of these grasslands was rapid because of the high proportion of perennial species that resprout vegetatively after fire and mowing. There appears to be little conservation benefit from fire, mowing or ploughing ungrazed areas, as we could identify no native plant species dependent on frequent disturbance for persistence in this grassland community. However, the ability of the Astrebla- and Dichanthium-dominated grasslands to recover quickly after disturbance, given favourable seasonal conditions, suggests that they are well adapted to natural disturbances (e.g. droughts, fire, flooding and native grazing).
Resumo:
A comprehensive analysis was conducted using 48 sorghum QTL studies published from 1995 to 2010 to make information from historical sorghum QTL experiments available in a form that could be more readily used by sorghum researchers and plant breeders. In total, 771 QTL relating to 161 unique traits from 44 studies were projected onto a sorghum consensus map. Confidence intervals (CI) of QTL were estimated so that valid comparisons could be made between studies. The method accounted for the number of lines used and the phenotypic variation explained by individual QTL from each study. In addition, estimated centimorgan (cM) locations were calculated for the predicted sorghum gene models identified in Phytozome (JGI GeneModels SBI v1.4) and compared with QTL distribution genome-wide, both on genetic linkage (cM) and physical (base-pair/bp) map scales. QTL and genes were distributed unevenly across the genome. Heterochromatic enrichment for QTL was observed, with approximately 22% of QTL either entirely or partially located in the heterochromatic regions. Heterochromatic gene enrichment was also observed based on their predicted cM locations on the sorghum consensus map, due to suppressed recombination in heterochromatic regions, in contrast to the euchromatic gene enrichment observed on the physical, sequence-based map. The finding of high gene density in recombination-poor regions, coupled with the association with increased QTL density, has implications for the development of more efficient breeding systems in sorghum to better exploit heterosis. The projected QTL information described, combined with the physical locations of sorghum sequence-based markers and predicted gene models, provides sorghum researchers with a useful resource for more detailed analysis of traits and development of efficient marker-assisted breeding strategies.
Resumo:
In recent years, there has been intense interest in the potential health benefits of dietary derived plant polyphenols and antioxidants. A new variety of Prunus salicina, Queen Garnet plum (QGP), was developed as a high anthocyanin, high antioxidant plum, in a Queensland Government breeding program. Following consumption of 400 mL QGP juice (QGPJ; 1,117 mg anthocyanins) by two healthy male subjects, QGP anthocyanins (cyanidin-3-glucoside and cyanidin-3-rutinoside) were excreted mainly as methylated and glucuronidated metabolites in urine (0.5% of the ingested dose within 24 h). Furthermore, QGPJ intake resulted in a threefold increase in hippuric acid excretion (potential biomarker for total polyphenols intake and metabolite), an increased urinary antioxidant capacity and a decreased malondialdehyde excretion (biomarker for oxidative stress) within 24 h as compared with the polyphenol-/antioxidant-free control. Results from this pilot study suggest that metabolites, and not the native QGP anthocyanins/polyphenols, are most likely the bioactive compounds in vivo.
Resumo:
The anti-thrombotic properties of an anthocyanin-rich Queen Garnet plum juice (QGPJ) and anthocyanin-free prune juice (PJ) were studied in this randomised, double-blind, crossover trial. Twenty-one healthy subjects (M = 10, F = 11) consumed QGPJ, PJ or placebo, 200 mL/day for 28-days followed by a 2-week wash-out period. Only QGPJ supplementation inhibited platelet aggregation induced by ADP (<5%, P = 0.02), collagen (<2.7%, P < 0.001) and arachidonic acid (<4%, P < 0.001); reduced platelet activation-dependent surface-marker P-selectin expression of activated de-granulated platelets (<17.2%, P = 0.04); prolonged activated-partial thromboplastin clotting time (>2.1 s, P = 0.03); reduced plasma-fibrinogen (<7.5%, P = 0.02) and malondialdehyde levels, a plasma biomarker of oxidative stress ( P = 0.016). PJ supplementation increased plasma hippuric acid content ( P = 0.018). QGPJ or PJ supplementation did not affect blood cell counts, lipid profile, or inflammation markers. Our findings suggest that QGPJ but not PJ has the potential to significantly attenuate thrombosis by reducing platelet activation/hyper-coagulability and oxidative stress.