10 resultados para chloride solutions
em eResearch Archive - Queensland Department of Agriculture
Resumo:
Objective: To assess the value of s-methylmethionine sulphonium chloride (SMMSC) (200 mg/kg) on nutritional performance of pigs and as prevention or therapy for oesophagogastric ulcers. Design: Sixty pigs from a high health status herd with continuing oesophagogastric ulcer problems were endoscopically assessed for the presence or absence of oesophagogastric ulcers. Forty-eight pigs were then selected and allocated according to an initial oesophagogastric epithelial (ulcer score) classification to replicated treatment groups in a 2 × 2 factorial design. Weight gain and feed intake were measured over 49 d, after which pigs were killed and stomachs were collected, re-examined and scored for oesophagogastric ulceration. Results: There was no difference over the 49 d in weight gain, feed intake and backfat in pigs with and without SMMSC supplementation between pigs with or without fully developed oesophagogastric ulcers at the start of the study. In pigs with an initially low ulcer score, feeding SMMSC did not prevent further oesophagogastric ulcer development. No significant effect of SMMSC was apparent when final mean oesophagogastric ulcer scores were compared in pigs with existing high ulcer score. However, further analysis of the changes in individual pig oesophagogastric ulcer scores during the experiment showed that the observed reductions in scores of the high ulcer group was significantly different from all other groups. Conclusion: This study has indicated that supplementation of pig diets with SMMSC cannot be justified unless the slight ulcer score improvement observed could be translated to some commercial production advantage such as a reduction in pig mortalities due to oesophagogastric ulcers. This study has further confirmed the benefit of endoscopy as a tool to enable objective assessment of oesophageal gastric health.
Resumo:
Salinity, sodicity, acidity, and phytotoxic levels of chloride (Cl) in subsoils are major constraints to crop production in many soils of north-eastern Australia because they reduce the ability of crop roots to extract water and nutrients from the soil. The complex interactions and correlations among soil properties result in multi-colinearity between soil properties and crop yield that makes it difficult to determine which constraint is the major limitation. We used ridge-regression analysis to overcome colinearity to evaluate the contribution of soil factors and water supply to the variation in the yields of 5 winter crops on soils with various levels and combinations of subsoil constraints in the region. Subsoil constraints measured were soil Cl, electrical conductivity of the saturation extract (ECse), and exchangeable sodium percentage (ESP). The ridge regression procedure selected several of the variables used in a descriptive model, which included in-crop rainfall, plant-available soil water at sowing in the 0.90-1.10 m soil layer, and soil Cl in the 0.90-1.10 m soil layer, and accounted for 77-85% of the variation in the grain yields of the 5 winter crops. Inclusion of ESP of the top soil (0.0-0.10 m soil layer) marginally increased the descriptive capability of the models for bread wheat, barley and durum wheat. Subsoil Cl concentration was found to be an effective substitute for subsoil water extraction. The estimates of the critical levels of subsoil Cl for a 10% reduction in the grain yield were 492 mg cl/kg for chickpea, 662 mg Cl/kg for durum wheat, 854 mg Cl/kg for bread wheat, 980 mg Cl/kg for canola, and 1012 mg Cl/kg for barley, thus suggesting that chickpea and durum wheat were more sensitive to subsoil Cl than bread wheat, barley, and canola.
Resumo:
The main aim of this project is to develop variety management packages to help tailor commercial malt and feed barley production in the Northern GRDC Region to commercial malt and feed barley specifications. Field trials are designed to give information.
Resumo:
The successful inclusion of break crops into the Burdekin sugar farming system will allow growers to diversify and capitalise on alternate crop income sources, particularly during cyclical downturns in sugar price. Secondly if cane productivity is improved through the inclusion of break crops, millers and growers stand to gain additional economic benefit compared to the current sugarcane monoculture.
Resumo:
Producing management packages for new northern barley varieties. Evaluating silage barley varieties.
Resumo:
Root disease causes about $503 million in losses annually to Australia's wheat and barley industries. Because of these large losses and in many cases the difficulty in reducing these losses through breeding or management, root diseases are candidates for solutions through genetic modification (GM). Through an extensive review of the scientific literature and patents, a range of approaches to GM solutions to root diseases are critically discussed. Given the high cost of regulatory approval for GM crops and a complex intellectual property (IP) landscape, it is likely that research in this area will be done in collaboration with international partners.
Resumo:
Developing best practices in Central Queensland to (a) manage difficult to control weeds; (b) improve herbicide efficacy under adverse conditions, and (c) manage weeds in wide-row crop systems.
Resumo:
The cropping region of northern Australia has a diverse range of cropping systems and weed flora. A fallow phase is commonly required between crops to enable the accumulation of stored soil water in these farming systems dominated by reduced tillage. During the fallow phase, weed control is important and is heavily reliant on herbicides. The most commonly used herbicide has been glyphosate. As a result of over-reliance on glyphosate, there are now seven confirmed glyphosate-resistant weeds and several glyphosate-tolerant species common in the region. As a result, the control of summer fallow weeds is become more complex. This paper outlines project work investigating improved weed control for summer fallows in the northern cropping region. Areas of research include weed ecology, chemical and non-chemical tactics, glyphosate resistance and resistance surveys. The project also has an economic and extension component. As a result of our research we have a better understanding of the ecology of major northern weeds and spread of glyphosate resistance in the region. We have identified and defined alternative herbicide and non-chemical approaches for the effective control of summer fallow weeds and have extended our research effectively to industry.
Resumo:
Species biology drives the frequency, duration and extent of survey and control activities in weed eradication programs. Researching the key biological characters can be difficult when plants occur at limited locations and are controlled immediately by field crews who are dedicated to preventing reproduction. Within the National Four Tropical Weeds Eradication Program and the former National Siam Weed Eradication Program, key information needed by the eradication teams has been obtained through a combination of field, glasshouse and laboratory studies without jeopardising the eradication objective. Information gained on seed longevity, age to reproductive maturity, dispersal and control options has been used to direct survey and control activities. Planned and opportunistic data collections will continue to provide biological information to refine eradication activities.
Resumo:
Deliquescent calcium chloride (CaCl2) and magnesium chloride (MgCl2) were investigated for their practical application to release ethylene gas from an ethylene-α-cyclodextrin inclusion complexes (CD IC) powder at relative humidities (RHs) between 11.2 and 93.6 % at 18 °C. The IC powder and deliquescent salts were mixed at a ratio of 1:5, respectively. CaCl2 and MgCl2 started to deliquesce at 32.7 % RH. The IC powder dissolved in the concentrated salt solutions to release ethylene gas. Increasing the RH accelerated the release rate. Maximum release of ethylene gas was achieved after 24 h at 75.5 and 93.6 % RH for both IC powder-deliquescent salts mixture. The deliquescent salts proved to be a simple option for releasing ethylene gas from the IC powder.