15 resultados para changing management.
em eResearch Archive - Queensland Department of Agriculture
Resumo:
Executive summary. In this report we analyse implementation costs and benefits for agricultural management practices, grouped into farming systems. In order to do so, we compare plot scale gross margins for the dominant agricultural production systems (sugarcane, grazing and banana cultivation) in the NRM regions Wet Tropics, Burdekin Dry Tropics and Mackay Whitsundays. Furthermore, where available, we present investment requirements for changing to improved farming systems. It must be noted that transaction costs are not captured within this project. For sugarcane, this economic analysis shows that there are expected benefits to sugarcane growers in the different regions through transitions to C and B class farming systems. Further transition to A-class farming systems can come at a cost, depending on the capital investment required and the length of the investment period. Obviously, the costs and benefits will vary for each individual grower and will depend on their starting point and individual property scenario therefore each circumstance needs to be carefully considered before making a change in management practice. In grazing, overall, reducing stocking rates comes at a cost (reduced benefits). However, when operating at low utilisation rates in wetter country, lowering stocking rates can potentially come at a benefit. With win-win potential, extension is preferred to assist farmer in changing management practices to improve their land condition. When reducing stocking rates comes at a cost, incentives may be applicable to support change among farmers. For banana cultivation, the results indicate that the transition to C and B class management practices is a worthwhile proposition from an economic perspective. For a change from B to A class farming systems however, it is not worthwhile from a financial perspective. This is largely due to the large capital investment associated with the change in irrigation system and negative impact in whole of farm gross margin. Overall, benefits will vary for each individual grower depending on their starting point and their individual property scenario. The results presented in this report are one possible set of figures to show the changes in profitability of a grower operating in different management classes. The results in this report are not prescriptive of every landholder. Landholders will have different costs and benefits from transitioning to improved practices, even if similar operations are practiced, hence it is recommended that landholders that are willing to change management undertake their own research and analysis into the expected costs and benefits for their own soil types and property circumstances.
Resumo:
Adults of a phosphine-resistant strain of Sitophilus oryzae (L) were exposed to constant phosphine concentrations of 0.0035-0.9 mg litre(-1) for periods of between 20 and 168 h at 25 °C, and the effects of time and concentration on mortality were quantified. Adults were also exposed to a series of treatments lasting 48, 72 or 168 h at 25 °C, during which the concentration of phosphine was varied. The aim of this study was to determine whether equations from experiments using constant concentrations could be used to predict the efficacy of changing phosphine concentrations against adults of S oryzae. A probit plane without interaction, in which the logarithms of time (t) and concentration (C) were variables, described the effects of concentration and time on mortality in experiments with constant concentrations. A derived equation of the form C^nt = k gave excellent predictions of toxicity when applied to data from changing concentration experiments. The results suggest that for resistant S oryzae adults there is nothing inherently different between constant and changing concentration regimes, and that data collected from fixed concentrations can be used to develop equations for predicting mortality in fumigations in which phosphine concentration changes. This approach could simplify the prediction of efficacy of typical fumigations in which concentrations tend to rise and then fall over a period of days.
2006 Presidential address: The changing face of forage systems for subtropical dairying in Australia
Resumo:
Nutrition influences reproductive efficiency and the survival of lambs and weaners but the costs of supplementary feeding or maintaining low stocking rates are not justified by the resulting income from higher lamb weaning rates and reduced weaner mortality. The current practice of segmenting the ewe flock using ultrasound scanning to determine the number of foetuses still results in groups of ewes with a wide range of condition scores and with widely differing nutritional requirements. This report describes an approach to precision management of pregnant ewes and weaners that is based on the e-sheep platform of technologies and uses computer-directed drafting for nutritional management of individual animals and walk-through weighing to monitor changing nutritional status. It is estimated that the cost of feeding a thousand-ewe flock can be reduced from $14,000 for feeding all animals to $3300 for targeted feeding of 25% of ewes requiring additional nutrition and 20% of weaners at risk of dying. The cost of the targeted feeding strategy is more than justified by the value of additional 12-month-old animals, which is $9000. The e-sheep precision nutrition system is not attractive to industry at this stage because of the cost of the e-sheep infrastructure, the perceived complexity of the technology and the requirement for further research, but it is expected to be a commercial option within three years.
Resumo:
The incorporation of sown pastures as short-term rotations into the cropping systems of northern Australia has been slow. The inherent chemical fertility and physical stability of the predominant vertisol soils across the region enabled farmers to grow crops for decades without nitrogen fertiliser, and precluded the evolution of a crop–pasture rotation culture. However, as less fertile and less physically stable soils were cropped for extended periods, farmers began to use contemporary farming and sown pasture technologies to rebuild and maintain their soils. This has typically involved sowing long-term grass and grass–legume pastures on the more marginal cropping soils of the region. In partnership with the catchment management authority, the Queensland Murray–Darling Committee (QMDC) and Landcare, a pasture extension process using the LeyGrain™ package was implemented in 2006 within two Grain & Graze projects in the Maranoa-Balonne and Border Rivers catchments in southern inland Queensland. The specific objectives were to increase the area sown to high quality pasture and to gain production and environmental benefits (particularly groundcover) through improving the skills of producers in pasture species selection, their understanding and management of risk during pasture establishment, and in managing pastures and the feed base better. The catalyst for increasing pasture sowings was a QMDC subsidy scheme for increasing groundcover on old cropping land. In recognising a need to enhance pasture knowledge and skills to implement this scheme, the QMDC and Landcare producer groups sought the involvement of, and set specific targets for, the LeyGrain workshop process. This is a highly interactive action learning process that built on the existing knowledge and skills of the producers. Thirty-four workshops were held with more than 200 producers in 26 existing groups and with private agronomists. An evaluation process assessed the impact of the workshops on the learning and skill development by participants, their commitment to practice change, and their future intent to sow pastures. The results across both project catchments were highly correlated. There was strong agreement by producers (>90%) that the workshops had improved knowledge and skills regarding the adaptation of pasture species to soils and climates, enabling a better selection at the paddock level. Additional strong impacts were in changing the attitudes of producers to all aspects of pasture establishment, and the relative species composition of mixtures. Producers made a strong commitment to practice change, particularly in managing pasture as a specialist crop at establishment to minimise risk, and in the better selection and management of improved pasture species (particularly legumes and the use of fertiliser). Producers have made a commitment to increase pasture sowings by 80% in the next 5 years, with fourteen producers in one group alone having committed to sow an additional 4893 ha of pasture in 2007–08 under the QMDC subsidy scheme. The success of the project was attributed to the partnership between QMDC and Landcare groups who set individual workshop targets with LeyGrain presenters, the interactive engagement processes within the workshops themselves, and the follow-up provided by the LeyGrain team for on-farm activities.
Resumo:
Rainfall variability is a major challenge to sustainable management in semi-arid rangelands. We present empirical evidence from a large, long-term grazing trial in northern Australia on the relative performance of constant heavy stocking, moderate stocking at long-term carrying capacity and variable stocking in coping with climate variability over a range of rainfall years. Moderate stocking gave good economic returns, maintained pasture condition and minimised soil loss and runoff. Heavy stocking was neither sustainable nor profitable in the long term. Variable stocking generally performed well but suffered economic loss and some decline in pasture condition in the transition from good to poor years. Importantly, our results show that sustainable and profitable management are compatible in semi-arid rangelands.
Resumo:
The Burdekin Rangelands is a diverse area of semi-arid eucalypt and acacia savannah covering six million hectares in north eastern Australia. The major land use is cattle grazing on 220 commercial cattle properties (average size 26,000 ha) each carrying on average 2600 adult equivalents. Production was the focus of the beef industry and support agencies prior to the mid 1980's. Widespread land degradation during the 1980's led to a grassroots realisation that environmental impacts, including water quality had to be addressed for the beef industry to attain sustainability. The formation of a series of producer based landcare gropus and the support of several Queensland and Australian government research and extension agencies led to a greater awareness and adoption of sound grazing land management practices (Shepherd 2005).
Resumo:
A simulation model that combines biological, search and economic components is applied to the eradication of a Miconia calvescens infestation at El Arish in tropical Queensland, Australia. Information on the year M. calvescens was introduced to the site, the number of plants controlled and the timing of control, is used to show that currently there could be M. calvescens plants remaining undetected at the site, including some mature plants. Modelling results indicate that the eradication programme has had a significant impact on the population of M. calvescens, as shown by simulated results for uncontrolled and controlled populations. The model was also used to investigate the effect of changing search effort on the cost of and time to eradication. Control costs were found to be negligible over all levels of search effort tested. Importantly, results suggest eradication may be achieved within several decades, if resources are increased slightly from their current levels and if there is a long-term commitment to funding the eradication programme.
Resumo:
Soft-leaf buffalo grass is increasing in popularity as an amenity turfgrass in Australia. This project was instigated to assess the adaptation of and establish management guidelines for its use in Australias vast array of growing environments. There is an extensive selection of soft-leaf buffalo grass cultivars throughout Australia and with the countrys changing climates from temperate in the south to tropical in the north not all cultivars are going to be adapted to all regions. The project evaluated 19 buffalo grass cultivars along with other warm-season grasses including green couch, kikuyu and sweet smother grass. The soft-leaf buffalo grasses were evaluated for their growth and adaptation in a number of regions throughout Australia including Western Australia, Victoria, ACT, NSW and Queensland. The growth habit of the individual cultivars was examined along with their level of shade tolerance, water use, herbicide tolerance, resistance to wear, response to nitrogen applications and growth potential in highly alkaline (pH) soils. The growth habit of the various cultivars currently commercially available in Australia differs considerably from the more robust type that spreads quicker and is thicker in appearance (Sir Walter, Kings Pride, Ned Kelly and Jabiru) to the dwarf types that are shorter and thinner in appearance (AusTine and AusDwarf). Soft-leaf buffalo grass types tested do not differ in water use when compared to old-style common buffalo grass. Thus, soft-leaf buffalo grasses, like other warm-season turfgrass species, are efficient in water use. These grasses also recover after periods of low water availability. Individual cultivar differences were not discernible. In high pH soils (i.e. on alkaline-side) some elements essential for plant growth (e.g. iron and manganese) may be deficient causing turfgrass to appear pale green, and visually unacceptable. When 14 soft-leaf buffalo grass genotypes were grown on a highly alkaline soil (pH 7.5-7.9), cultivars differed in leaf iron, but not in leaf manganese, concentrations. Nitrogen is critical to the production of quality turf. The methods for applying this essential element can be manipulated to minimise the maintenance inputs (mowing) during the peak growing period (summer). By applying the greatest proportion of the turfs total nitrogen requirements in early spring, peak summer growth can be reduced resulting in a corresponding reduction in mowing requirements. Soft-leaf buffalo grass cultivars are more shade and wear tolerant than other warm-season turfgrasses being used by homeowners. There are differences between the individual buffalo grass varieties however. The majority of types currently available would be classified as having moderate levels of shade tolerance and wear reasonably well with good recovery rates. The impact of wear in a shaded environment was not tested and there is a need to investigate this as this is a typical growing environment for many homeowners. The use of herbicides is required to maintain quality soft-leaf buffalo grass turf. The development of softer herbicides for other turfgrasses has seen an increase in their popularity. The buffalo grass cultivars currently available have shown varying levels of susceptibility to the chemicals tested. The majority of the cultivars evaluated have demonstrated low levels of phytotoxicity to the herbicides chlorsulfuron (Glean) and fluroxypyr (Starane and Comet). In general, soft leaf buffalo grasses are varied in their makeup and have demonstrated varying levels of tolerance/susceptibility/adaptation to the conditions they are grown under. Consequently, there is a need to choose the cultivar most suited to the environment it is expected to perform in and the management style it will be exposed to. Future work is required to assess how the structure of the different cultivars impacts on their capacity to tolerate wear, varying shade levels, water use and herbicide tolerance. The development of a growth model may provide the solution.
Resumo:
Parthenium weed (Parthenium hysterophorus L.) is an erect, branched, annual plant of the family Asteraceae. It is native to the tropical Americas, while now widely distributed throughout Africa, Asia, Oceania, and Australasia. Due to its allelopathic and toxic characteristics, parthenium weed has been considered to be a weed of global significance. These effects occur across agriculture (crops and pastures), within natural ecosystems, and has impacts upon health (human and animals). Although integrated weed management (IWM) for parthenium weed has had some success, due to its tolerance and good adaptability to temperature, precipitation, and CO2, this weed has been predicted to become more vigorous under a changing climate resulting in an altered canopy architecture. From the viewpoint of IWM, the altered canopy architecture may be associated with not only improved competitive ability and replacement but also may alter the effectiveness of biocontrol agents and other management strategies. This paper reports on a preliminary study on parthenium weed canopy architecture at three temperature regimes (day/night 22/15 °C, 27/20 °C, and 32/25 °C in thermal time 12/12 hours) and establishes a threedimensional (3D) canopy model using Lindenmayer-systems (L-systems). This experiment was conducted in a series of controlled environment rooms with parthenium weed plants being grown in a heavy clay soil. A sonic digitizer system was used to record the morphology, topology, and geometry of the plants for model construction. The main findings include the determination of the phyllochron which enables the prediction of parthenium weed growth under different temperature regimes and that increased temperature enhances growth and enlarges the plants canopy size and structure. The developed 3D canopy model provides a tool to simulate and predict the weed growth in response to temperature, and can be adjusted for studies of other climatic variables such as precipitation and CO2. Further studies are planned to investigate the effects of other climatic variables, and the predicted changes in the pathogenic biocontrol agent effectiveness.
Resumo:
A case study was undertaken to determine the economic impact of a change in management class as detailed in the A, B, C and D management class framework. This document focuses on the implications of changing from D to C, C to B and B to A class management in the Burdekin River irrigation area (BRIA) and if the change is worthwhile from an economic perspective. This report provides a guide to the economic impact that may be expected when undertaking a particular change in farming practices and will ultimately lead to more informed decisions being made by key industry stakeholders. It is recognised that these management classes have certain limitations and in many cases the grouping of practices may not be reflective of the real situation. The economic case study is based on the A, B, C and D management class framework for water quality improvement developed in 2007/2008 for the Burdekin natural resource management region. The framework for the Burdekin is currently being updated to clarify some issues and incorporate new knowledge since the earlier version of the framework. However, this updated version is not yet complete and so the Paddock to Reef project has used the most current available version of the framework for the modelling and economics. As part of the project specification, sugarcane crop production data for the BRIA was provided by the APSIM model. The information obtained from the APSIM crop modelling programme included sugarcane yields and legume grain yield (legume grain yield only applies to A class management practice). Because of the complexity involved in the economic calculations, a combination of the FEAT, PiRisk and a custom made spreadsheet was used for the economic analysis. Figures calculated in the FEAT program were transferred to the custom made spreadsheet to develop a discounted cash flow analysis. The marginal cash flow differences for each farming system were simulated over a 5-year and 10-year planning horizon to determine the net present value of changing across different management practices. PiRisk was used to test uncertain parameters in the economic analysis and the potential risk associated with a change in value.
Resumo:
A case study was undertaken to determine the economic impact of a change in management class as detailed in the A, B, C and D management class framework. This document focuses on the implications of changing from D to C, C to B and B to A class management in the Burdekin Delta region and if the change is worthwhile from an economic perspective. This report provides a guide to the economic impact that may be expected when undertaking a particular change in farming practices and will ultimately lead to more informed decisions being made by key industry stakeholders. It is recognised that these management classes have certain limitations and in many cases the grouping of practices may not be reflective of the real situation. The economic case study is based on the A, B, C and D management class framework for water quality improvement developed in 2007/2008 for the Burdekin natural resource management region. The framework for the Burdekin is currently being updated to clarify some issues and incorporate new knowledge since the earlier version of the framework. However, this updated version is not yet complete and so the Paddock to Reef project has used the most current available version of the framework for the modelling and economics. As part of the project specification, sugarcane crop production data for the Burdekin Delta region was provided by the APSIM model. The information obtained from the APSIM crop modelling programme included sugarcane yields and legume grain yield (legume grain yield only applies to A class management practice). Because of the complexity involved in the economic calculations, a combination of the FEAT, PiRisk and a custom made spreadsheet was used for the economic analysis. Figures calculated in the FEAT program were transferred to the custom made spreadsheet to develop a discounted cash flow analysis. The marginal cash flow differences for each farming system were simulated over a 5-year and 10-year planning horizon to determine the Net Present Value of changing across different management practices. PiRisk was used to test uncertain parameters in the economic analysis and the potential risk associated with a change in value.
Resumo:
A case study was undertaken to determine the economic impact of a change in management class as detailed in the A, B, C and D management class framework. This document focuses on the implications of changing from D to C, C to B and B to A class management in the Tully region and if the change is worthwhile from an economic perspective. This report provides a guide to the economic impact that may be expected when undertaking a particular change in farming practices and will ultimately lead to more informed decisions being made by key industry stakeholders. It is recognised that these management classes have certain limitations and in many cases the grouping of practices may not be reflective of the real situation. The economic case study is based on the A, B, C and D management class framework for water quality improvement developed in 2007/2008 by the wet tropics natural resource management region. The framework for wet tropics is currently being updated to clarify some issues and incorporate new knowledge since the earlier version of the framework. However, this updated version is not yet complete and so the Paddock to Reef project has used the most current available version of the framework for the modelling and economics. As part of the project specification, sugarcane crop production data for the Tully region was provided by the APSIM model. Because of the complexity involved in the economic calculations, a combination of the FEAT, PiRisk and a custom made spreadsheet was used for the economic analysis. Figures calculated in the FEAT program were transferred to the custom made spreadsheet to develop a discounted cash flow analysis. The marginal cash flow differences for each farming system were simulated over a 5-year and 10-year planning horizon to determine the Net Present Value of changing across different management practices. PiRisk was used to test uncertain parameters in the economic analysis and the potential risk associated with a change in value.
Resumo:
Extensive resources are allocated to managing vertebrate pests, yet spatial understanding of pest threats, and how they respond to management, is limited at the regional scale where much decision-making is undertaken. We provide regional-scale spatial models and management guidance for European rabbits (Oryctolagus cuniculus) in a 260,791 km(2) region in Australia by determining habitat suitability, habitat susceptibility and the effects of the primary rabbit management options (barrier fence, shooting and baiting and warren ripping) or changing predation or disease control levels. A participatory modelling approach was used to develop a Bayesian network which captured the main drivers of suitability and spread, which in turn was linked spatially to develop high resolution risk maps. Policy-makers, rabbit managers and technical experts were responsible for defining the questions the model needed to address, and for subsequently developing and parameterising the model. Habitat suitability was determined by conditions required for warren-building and by above-ground requirements, such as food and harbour, and habitat susceptibility by the distance from current distributions, habitat suitability, and the costs of traversing habitats of different quality. At least one-third of the region had a high probability of being highly suitable (support high rabbit densities), with the model supported by validation. Habitat susceptibility was largely restricted by the current known rabbit distribution. Warren ripping was the most effective control option as warrens were considered essential for rabbit persistence. The anticipated increase in disease resistance was predicted to increase the probability of moderately suitable habitat becoming highly suitable, but not increase the at-risk area. We demonstrate that it is possible to build spatial models to guide regional-level management of vertebrate pests which use the best available knowledge and capture fine spatial-scale processes.
Resumo:
There is uncertainty over the potential changes to rainfall across northern Australia under climate change. Since rainfall is a key driver of pasture growth, cattle numbers and the resulting animal productivity and beef business profitability, the ability to anticipate possible management strategies within such uncertainty is crucial. The Climate Savvy Grazing project used existing research, expert knowledge and computer modelling to explore the best-bet management strategies within best, median and worse-case future climate scenarios. All three scenarios indicated changes to the environment and resources upon which the grazing industry of northern Australia depends. Well-adapted management strategies under a changing climate are very similar to best practice within current climatic conditions. Maintaining good land condition builds resource resilience, maximises opportunities under higher rainfall years and reduces the risk of degradation during drought and failed wet seasons. Matching stocking rate to the safe long-term carrying capacity of the land is essential; reducing stock numbers in response to poor seasons and conservatively increasing stock numbers in response to better seasons generally improves profitability and maintains land in good condition. Spelling over the summer growing season will improve land condition under a changing climate as it does under current conditions. Six regions were included within the project. Of these, the Victoria River District in the Northern Territory, Gulf country of Queensland and the Kimberley region of Western Australia had projections of similar or higher than current rainfall and the potential for carrying capacity to increase. The Alice Springs, Maranoa-Balonne and Fitzroy regions had projections of generally drying conditions and the greatest risk of reduced pasture growth and carrying capacity. Encouraging producers to consider and act on the risks, opportunities and management options inherent in climate change was a key goal of the project. More than 60,000 beef producers, advisors and stakeholders are now more aware of the management strategies which build resource resilience, and that resilience helps buffer against the effects of variable and changing climatic conditions. Over 700 producers have stated they have improved confidence, skills and knowledge to attempt new practices to build resilience. During the course of the project, more than 165 beef producers reported they have implemented changes to build resource and business resilience.